Integration of Cine-cardiac Magnetic Resonance Radiomics and Machine Learning for Differentiating Ischemic and Dilated Cardiomyopathy

扩张型心肌病 无线电技术 磁共振成像 心脏磁共振 医学 心肌病 心脏病学 内科学 放射科 心力衰竭
作者
Jia Deng,Langtao Zhou,Yueyan Li,Ying Yu,Jingjing Zhang,Bihong Liao,Guanghua Luo,Jinwei Tian,Hong Zhou,Huifang Tang
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (7): 2704-2714 被引量:7
标识
DOI:10.1016/j.acra.2024.03.032
摘要

•The diagnostic utility of machine learning algorithms utilizing radiomic features derived from CMR cine sequences was applied. •Integrating radiomics with machine learning methodologies has been established. •The accuracy of CMR image analysis, offers valuable insights for clinical diagnosis, minimizes examination risks for patients, and potentially shortens medical imaging procedures. Rationale and Objectives This study aims to evaluate the capability of machine learning algorithms in utilizing radiomic features extracted from cine-cardiac magnetic resonance (CMR) sequences for differentiating between ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). Materials and Methods This retrospective study included 115 cardiomyopathy patients subdivided into ICM (n = 64) and DCM cohorts (n = 51). We collected invasive clinical (IC), noninvasive clinical (NIC), and combined clinical (CC) feature subsets. Radiomic features were extracted from regions of interest (ROIs) in the left ventricle (LV), LV cavity (LVC), and myocardium (MYO). We tested 10 classical machine learning classifiers and validated them through fivefold cross-validation. We compared the efficacy of clinical feature-based models and radiomics-based models to identify the superior diagnostic approach. Results In the validation set, the Gaussian naive Bayes (GNB) model outperformed the other models in all categories, with areas under the curve (AUCs) of 0.879 for IC_GNB, 0.906 for NIC_GNB, and 0.906 for CC_GNB. Among the radiomics models, the MYO_LASSOCV_MLP model demonstrated the highest AUC (0.919). In the test set, the MYO_RFECV_GNB radiomics model achieved the highest AUC (0.857), surpassing the performance of the three clinical feature models (IC_GNB: 0.732; NIC_GNB: 0.75; CC_GNB: 0.786). Conclusion Radiomics models leveraging MYO images from cine-CMR exhibit promising potential for differentiating ICM from DCM, indicating the significant clinical application scope of such models. Clinical Relevance Statement The integration of radiomics models and machine learning methods utilizing cine-CMR sequences enhances the diagnostic capability to distinguish between ICM and DCM, minimizes examination risks for patients, and potentially reduces the duration of medical imaging procedures. This study aims to evaluate the capability of machine learning algorithms in utilizing radiomic features extracted from cine-cardiac magnetic resonance (CMR) sequences for differentiating between ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). This retrospective study included 115 cardiomyopathy patients subdivided into ICM (n = 64) and DCM cohorts (n = 51). We collected invasive clinical (IC), noninvasive clinical (NIC), and combined clinical (CC) feature subsets. Radiomic features were extracted from regions of interest (ROIs) in the left ventricle (LV), LV cavity (LVC), and myocardium (MYO). We tested 10 classical machine learning classifiers and validated them through fivefold cross-validation. We compared the efficacy of clinical feature-based models and radiomics-based models to identify the superior diagnostic approach. In the validation set, the Gaussian naive Bayes (GNB) model outperformed the other models in all categories, with areas under the curve (AUCs) of 0.879 for IC_GNB, 0.906 for NIC_GNB, and 0.906 for CC_GNB. Among the radiomics models, the MYO_LASSOCV_MLP model demonstrated the highest AUC (0.919). In the test set, the MYO_RFECV_GNB radiomics model achieved the highest AUC (0.857), surpassing the performance of the three clinical feature models (IC_GNB: 0.732; NIC_GNB: 0.75; CC_GNB: 0.786). Radiomics models leveraging MYO images from cine-CMR exhibit promising potential for differentiating ICM from DCM, indicating the significant clinical application scope of such models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yinx完成签到,获得积分10
刚刚
下雪完成签到,获得积分10
刚刚
加碘盐完成签到,获得积分10
刚刚
shmily完成签到,获得积分10
刚刚
所所应助老衲采纳,获得10
1秒前
科研通AI6应助hu采纳,获得10
1秒前
科研通AI6应助心灵尔安采纳,获得10
1秒前
激情的随阴完成签到,获得积分10
1秒前
绵绵球完成签到,获得积分0
2秒前
在水一方应助Dream采纳,获得10
2秒前
囚徒完成签到,获得积分10
2秒前
斯文败类应助陈佩chenpei采纳,获得10
3秒前
3秒前
Jouleken完成签到,获得积分0
3秒前
和谐的黄豆完成签到,获得积分10
4秒前
小林子发布了新的文献求助10
4秒前
4秒前
4秒前
Jim完成签到 ,获得积分10
4秒前
5秒前
兔子发布了新的文献求助10
6秒前
Yu完成签到,获得积分20
6秒前
奋斗慕凝完成签到 ,获得积分10
6秒前
酷波er应助starts采纳,获得10
7秒前
YuenYuen完成签到,获得积分10
7秒前
儒雅无剑发布了新的文献求助10
7秒前
松山小吏完成签到,获得积分10
7秒前
7秒前
AAA苦读发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
土豪的雅柔完成签到,获得积分10
9秒前
ddd发布了新的文献求助10
9秒前
简单的听寒完成签到,获得积分10
9秒前
9秒前
10秒前
科研通AI2S应助Haru采纳,获得30
10秒前
黑章鱼保罗完成签到,获得积分10
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313