亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integration of Cine-cardiac Magnetic Resonance Radiomics and Machine Learning for Differentiating Ischemic and Dilated Cardiomyopathy

扩张型心肌病 无线电技术 磁共振成像 心脏磁共振 医学 心肌病 心脏病学 内科学 放射科 心力衰竭
作者
Jia Deng,Langtao Zhou,Yueyan Li,Ying Yu,Jingjing Zhang,Bihong Liao,Guanghua Luo,Jinwei Tian,Hong Zhou,Huifang Tang
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (7): 2704-2714 被引量:7
标识
DOI:10.1016/j.acra.2024.03.032
摘要

•The diagnostic utility of machine learning algorithms utilizing radiomic features derived from CMR cine sequences was applied. •Integrating radiomics with machine learning methodologies has been established. •The accuracy of CMR image analysis, offers valuable insights for clinical diagnosis, minimizes examination risks for patients, and potentially shortens medical imaging procedures. Rationale and Objectives This study aims to evaluate the capability of machine learning algorithms in utilizing radiomic features extracted from cine-cardiac magnetic resonance (CMR) sequences for differentiating between ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). Materials and Methods This retrospective study included 115 cardiomyopathy patients subdivided into ICM (n = 64) and DCM cohorts (n = 51). We collected invasive clinical (IC), noninvasive clinical (NIC), and combined clinical (CC) feature subsets. Radiomic features were extracted from regions of interest (ROIs) in the left ventricle (LV), LV cavity (LVC), and myocardium (MYO). We tested 10 classical machine learning classifiers and validated them through fivefold cross-validation. We compared the efficacy of clinical feature-based models and radiomics-based models to identify the superior diagnostic approach. Results In the validation set, the Gaussian naive Bayes (GNB) model outperformed the other models in all categories, with areas under the curve (AUCs) of 0.879 for IC_GNB, 0.906 for NIC_GNB, and 0.906 for CC_GNB. Among the radiomics models, the MYO_LASSOCV_MLP model demonstrated the highest AUC (0.919). In the test set, the MYO_RFECV_GNB radiomics model achieved the highest AUC (0.857), surpassing the performance of the three clinical feature models (IC_GNB: 0.732; NIC_GNB: 0.75; CC_GNB: 0.786). Conclusion Radiomics models leveraging MYO images from cine-CMR exhibit promising potential for differentiating ICM from DCM, indicating the significant clinical application scope of such models. Clinical Relevance Statement The integration of radiomics models and machine learning methods utilizing cine-CMR sequences enhances the diagnostic capability to distinguish between ICM and DCM, minimizes examination risks for patients, and potentially reduces the duration of medical imaging procedures. This study aims to evaluate the capability of machine learning algorithms in utilizing radiomic features extracted from cine-cardiac magnetic resonance (CMR) sequences for differentiating between ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). This retrospective study included 115 cardiomyopathy patients subdivided into ICM (n = 64) and DCM cohorts (n = 51). We collected invasive clinical (IC), noninvasive clinical (NIC), and combined clinical (CC) feature subsets. Radiomic features were extracted from regions of interest (ROIs) in the left ventricle (LV), LV cavity (LVC), and myocardium (MYO). We tested 10 classical machine learning classifiers and validated them through fivefold cross-validation. We compared the efficacy of clinical feature-based models and radiomics-based models to identify the superior diagnostic approach. In the validation set, the Gaussian naive Bayes (GNB) model outperformed the other models in all categories, with areas under the curve (AUCs) of 0.879 for IC_GNB, 0.906 for NIC_GNB, and 0.906 for CC_GNB. Among the radiomics models, the MYO_LASSOCV_MLP model demonstrated the highest AUC (0.919). In the test set, the MYO_RFECV_GNB radiomics model achieved the highest AUC (0.857), surpassing the performance of the three clinical feature models (IC_GNB: 0.732; NIC_GNB: 0.75; CC_GNB: 0.786). Radiomics models leveraging MYO images from cine-CMR exhibit promising potential for differentiating ICM from DCM, indicating the significant clinical application scope of such models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
不安青牛应助zhangxiaoqing采纳,获得10
11秒前
小马甲应助傅嘉庆采纳,获得10
13秒前
啦啦啦发布了新的文献求助10
19秒前
53秒前
xxi发布了新的文献求助10
58秒前
大模型应助Chloe采纳,获得10
58秒前
小白完成签到 ,获得积分10
59秒前
爆米花应助啦啦啦采纳,获得10
1分钟前
Jasper应助哈皮波采纳,获得10
1分钟前
1分钟前
哈皮波发布了新的文献求助10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
Chloe发布了新的文献求助10
1分钟前
开放道天发布了新的文献求助30
2分钟前
2分钟前
2分钟前
鱼鱼片片发布了新的文献求助10
2分钟前
啦啦啦发布了新的文献求助10
2分钟前
852应助开放道天采纳,获得10
2分钟前
啦啦啦完成签到,获得积分10
2分钟前
bbbbb发布了新的文献求助30
2分钟前
bbbbb完成签到,获得积分10
3分钟前
wwe完成签到,获得积分10
3分钟前
不能吃太饱完成签到 ,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
不安青牛应助zhangxiaoqing采纳,获得10
4分钟前
5分钟前
ffff完成签到 ,获得积分10
5分钟前
田様应助科研通管家采纳,获得10
5分钟前
5分钟前
blush完成签到 ,获得积分10
5分钟前
开放道天发布了新的文献求助10
6分钟前
小李老博完成签到,获得积分10
6分钟前
Orange应助哈皮波采纳,获得10
7分钟前
7分钟前
哈皮波发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681725
求助须知:如何正确求助?哪些是违规求助? 5012386
关于积分的说明 15176015
捐赠科研通 4841250
什么是DOI,文献DOI怎么找? 2595040
邀请新用户注册赠送积分活动 1548025
关于科研通互助平台的介绍 1506079