亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integration of Cine-cardiac Magnetic Resonance Radiomics and Machine Learning for Differentiating Ischemic and Dilated Cardiomyopathy

扩张型心肌病 无线电技术 磁共振成像 心脏磁共振 医学 心肌病 心脏病学 内科学 放射科 心力衰竭
作者
Jia Deng,Langtao Zhou,Yueyan Li,Ying Yu,J Zhang,Bihong Liao,Guanghua Luo,Jinwei Tian,Hong Zhou,Huifang Tang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (7): 2704-2714 被引量:5
标识
DOI:10.1016/j.acra.2024.03.032
摘要

•The diagnostic utility of machine learning algorithms utilizing radiomic features derived from CMR cine sequences was applied. •Integrating radiomics with machine learning methodologies has been established. •The accuracy of CMR image analysis, offers valuable insights for clinical diagnosis, minimizes examination risks for patients, and potentially shortens medical imaging procedures. Rationale and Objectives This study aims to evaluate the capability of machine learning algorithms in utilizing radiomic features extracted from cine-cardiac magnetic resonance (CMR) sequences for differentiating between ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). Materials and Methods This retrospective study included 115 cardiomyopathy patients subdivided into ICM (n = 64) and DCM cohorts (n = 51). We collected invasive clinical (IC), noninvasive clinical (NIC), and combined clinical (CC) feature subsets. Radiomic features were extracted from regions of interest (ROIs) in the left ventricle (LV), LV cavity (LVC), and myocardium (MYO). We tested 10 classical machine learning classifiers and validated them through fivefold cross-validation. We compared the efficacy of clinical feature-based models and radiomics-based models to identify the superior diagnostic approach. Results In the validation set, the Gaussian naive Bayes (GNB) model outperformed the other models in all categories, with areas under the curve (AUCs) of 0.879 for IC_GNB, 0.906 for NIC_GNB, and 0.906 for CC_GNB. Among the radiomics models, the MYO_LASSOCV_MLP model demonstrated the highest AUC (0.919). In the test set, the MYO_RFECV_GNB radiomics model achieved the highest AUC (0.857), surpassing the performance of the three clinical feature models (IC_GNB: 0.732; NIC_GNB: 0.75; CC_GNB: 0.786). Conclusion Radiomics models leveraging MYO images from cine-CMR exhibit promising potential for differentiating ICM from DCM, indicating the significant clinical application scope of such models. Clinical Relevance Statement The integration of radiomics models and machine learning methods utilizing cine-CMR sequences enhances the diagnostic capability to distinguish between ICM and DCM, minimizes examination risks for patients, and potentially reduces the duration of medical imaging procedures. This study aims to evaluate the capability of machine learning algorithms in utilizing radiomic features extracted from cine-cardiac magnetic resonance (CMR) sequences for differentiating between ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). This retrospective study included 115 cardiomyopathy patients subdivided into ICM (n = 64) and DCM cohorts (n = 51). We collected invasive clinical (IC), noninvasive clinical (NIC), and combined clinical (CC) feature subsets. Radiomic features were extracted from regions of interest (ROIs) in the left ventricle (LV), LV cavity (LVC), and myocardium (MYO). We tested 10 classical machine learning classifiers and validated them through fivefold cross-validation. We compared the efficacy of clinical feature-based models and radiomics-based models to identify the superior diagnostic approach. In the validation set, the Gaussian naive Bayes (GNB) model outperformed the other models in all categories, with areas under the curve (AUCs) of 0.879 for IC_GNB, 0.906 for NIC_GNB, and 0.906 for CC_GNB. Among the radiomics models, the MYO_LASSOCV_MLP model demonstrated the highest AUC (0.919). In the test set, the MYO_RFECV_GNB radiomics model achieved the highest AUC (0.857), surpassing the performance of the three clinical feature models (IC_GNB: 0.732; NIC_GNB: 0.75; CC_GNB: 0.786). Radiomics models leveraging MYO images from cine-CMR exhibit promising potential for differentiating ICM from DCM, indicating the significant clinical application scope of such models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yusovegoistt发布了新的文献求助10
1秒前
1分钟前
Ryu发布了新的文献求助10
1分钟前
NexusExplorer应助我是熊大采纳,获得10
1分钟前
1分钟前
Ryu完成签到,获得积分10
1分钟前
天天快乐应助玛璃鸶采纳,获得10
2分钟前
2分钟前
2分钟前
我是熊大发布了新的文献求助10
2分钟前
2分钟前
玛璃鸶发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助20
2分钟前
2分钟前
xgnxgnxgn完成签到 ,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
qin应助科研通管家采纳,获得10
3分钟前
隐形曼青应助科研通管家采纳,获得10
3分钟前
馆长举报BoBO求助涉嫌违规
3分钟前
馆长举报吉祥如意求助涉嫌违规
3分钟前
3分钟前
lixuebin完成签到 ,获得积分10
3分钟前
3分钟前
yusovegoistt发布了新的文献求助10
3分钟前
Swear完成签到 ,获得积分10
3分钟前
馆长举报张梦境求助涉嫌违规
3分钟前
Omni完成签到,获得积分10
4分钟前
4分钟前
麻辣鸡丝发布了新的文献求助10
4分钟前
馆长举报量子星尘求助涉嫌违规
4分钟前
4分钟前
4分钟前
归尘发布了新的文献求助10
4分钟前
5分钟前
MchemG应助科研通管家采纳,获得30
5分钟前
风停了完成签到,获得积分10
5分钟前
wangermazi完成签到,获得积分0
5分钟前
爱吃大米饭完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4983930
求助须知:如何正确求助?哪些是违规求助? 4234981
关于积分的说明 13189593
捐赠科研通 4027452
什么是DOI,文献DOI怎么找? 2203231
邀请新用户注册赠送积分活动 1215420
关于科研通互助平台的介绍 1132656