Expression Complementary Disentanglement Network for Facial Expression Recognition

表达式(计算机科学) 面部表情 面部表情识别 计算机科学 模式识别(心理学) 人工智能 面部识别系统 程序设计语言
作者
Shanmin Wang,Hui Shuai,Lei Zhu,Qingshan Liu
出处
期刊:Chinese Journal of Electronics [Institution of Electrical Engineers]
卷期号:33 (3): 742-752 被引量:1
标识
DOI:10.23919/cje.2022.00.351
摘要

Disentangling facial expressions from other disturbing facial attributes in face images is an essential topic for facial expression recognition. Previous methods only care about facial expression disentanglement (FED) itself, ignoring the negative effects of other facial attributes. Due to the annotations on limited facial attributes, it is difficult for existing FED solutions to disentangle all disturbance from the input face. To solve this issue, we propose an expression complementary disentanglement network (ECDNet). ECDNet proposes to finish the FED task during a face reconstruction process, so as to address all facial attributes during disentanglement. Different from traditional re-construction models, ECDNet reconstructs face images by progressively generating and combining facial appearance and matching geometry. It designs the expression incentive (EIE) and expression inhibition (EIN) mechanisms, inducing the model to characterize the disentangled expression and complementary parts precisely. Facial geometry and appearance, generated in the reconstructed process, are dealt with to represent facial expressions and complementary parts, respectively. The combination of distinctive reconstruction model, EIE, and EIN mechanisms ensures the completeness and exactness of the FED task. Experimental results on RAF-DB, AffectNet, and CAER-S datasets have proven the effectiveness and superiority of ECDNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
险胜应助baby采纳,获得10
刚刚
精明的远锋完成签到,获得积分10
刚刚
2秒前
2秒前
小费发布了新的文献求助50
2秒前
3秒前
CodeCraft应助YY采纳,获得10
5秒前
5秒前
Q22应助19采纳,获得30
6秒前
Baker完成签到,获得积分10
6秒前
佐哥完成签到,获得积分10
6秒前
6秒前
李爱国应助123采纳,获得10
6秒前
hhh123完成签到,获得积分10
6秒前
生动的愚志完成签到,获得积分10
7秒前
Officer216发布了新的文献求助10
7秒前
大模型应助柏白凝采纳,获得10
7秒前
xiangpimei完成签到 ,获得积分10
8秒前
传奇3应助米丸子采纳,获得10
8秒前
完美世界应助细腻清采纳,获得10
8秒前
藤大阳发布了新的文献求助10
9秒前
dancy315完成签到,获得积分10
9秒前
9秒前
小猪少年呆呆完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
leah应助U2采纳,获得10
11秒前
大个应助吹风的田采纳,获得10
12秒前
缓慢的惜寒关注了科研通微信公众号
12秒前
blouver完成签到,获得积分10
13秒前
mhl11应助yuanll采纳,获得20
13秒前
serendipity发布了新的文献求助10
14秒前
llhh2024发布了新的文献求助10
14秒前
哈哈团长发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
沙海冬完成签到,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305763
求助须知:如何正确求助?哪些是违规求助? 2939395
关于积分的说明 8493534
捐赠科研通 2613845
什么是DOI,文献DOI怎么找? 1427668
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647945