Survival Prediction Across Diverse Cancer Types Using Neural Networks

人工神经网络 计算机科学 人工智能 癌症 机器学习 生物 遗传学
作者
Xu Yan,Weimin Wang,Mingxuan Xiao,Y Li,Min Gao
标识
DOI:10.1145/3653946.3653966
摘要

Gastric cancer and Colon adenocarcinoma represent widespread and challenging malignancies with high mortality rates and complex treatment landscapes. In response to the critical need for accurate prognosis in cancer patients, the medical community has embraced the 5-year survival rate as a vital metric for estimating patient outcomes. This study introduces a pioneering approach to enhance survival prediction models for gastric and Colon adenocarcinoma patients. Leveraging advanced image analysis techniques, we sliced whole slide images (WSI) of these cancers, extracting comprehensive features to capture nuanced tumor characteristics. Subsequently, we constructed patient-level graphs, encapsulating intricate spatial relationships within tumor tissues. These graphs served as inputs for a sophisticated 4-layer graph convolutional neural network (GCN), designed to exploit the inherent connectivity of the data for comprehensive analysis and prediction. By integrating patients' total survival time and survival status, we computed C-index values for gastric cancer and Colon adenocarcinoma, yielding 0.57 and 0.64, respectively. Significantly surpassing previous convolutional neural network models, these results underscore the efficacy of our approach in accurately predicting patient survival outcomes. This research holds profound implications for both the medical and AI communities, offering insights into cancer biology and progression while advancing personalized treatment strategies. Ultimately, our study represents a significant stride in leveraging AI-driven methodologies to revolutionize cancer prognosis and improve patient outcomes on a global scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Rondab应助Luffa采纳,获得10
4秒前
buno发布了新的文献求助10
5秒前
wang完成签到,获得积分10
6秒前
7秒前
8秒前
Aurora完成签到,获得积分10
8秒前
llllissa发布了新的文献求助10
8秒前
8秒前
小白白发布了新的文献求助10
8秒前
ZeroONE发布了新的文献求助10
11秒前
WC241002292发布了新的文献求助10
11秒前
贾JIA发布了新的文献求助10
12秒前
ZZZ完成签到 ,获得积分10
14秒前
15秒前
ZeroONE完成签到,获得积分10
18秒前
maclogos发布了新的文献求助10
18秒前
文天烽完成签到,获得积分10
19秒前
21秒前
CodeCraft应助cuncaoxin采纳,获得10
23秒前
pe完成签到,获得积分10
25秒前
季橙发布了新的文献求助10
26秒前
蜡笔小新完成签到,获得积分10
27秒前
pe发布了新的文献求助10
28秒前
龙龙ff11_完成签到,获得积分10
30秒前
31秒前
31秒前
32秒前
32秒前
大模型应助大方的羊青采纳,获得10
33秒前
33秒前
33秒前
拉尼娜完成签到,获得积分20
34秒前
王星星发布了新的文献求助10
35秒前
dreamboat发布了新的文献求助10
36秒前
36秒前
拉尼娜发布了新的文献求助10
38秒前
阿海发布了新的文献求助10
39秒前
llllissa完成签到,获得积分10
41秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994236
求助须知:如何正确求助?哪些是违规求助? 3534710
关于积分的说明 11266276
捐赠科研通 3274624
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809731