Survival Prediction Across Diverse Cancer Types Using Neural Networks

人工神经网络 计算机科学 人工智能 癌症 机器学习 生物 遗传学
作者
Xu Yan,Weimin Wang,Mingxuan Xiao,Y Li,Min Gao
标识
DOI:10.1145/3653946.3653966
摘要

Gastric cancer and Colon adenocarcinoma represent widespread and challenging malignancies with high mortality rates and complex treatment landscapes. In response to the critical need for accurate prognosis in cancer patients, the medical community has embraced the 5-year survival rate as a vital metric for estimating patient outcomes. This study introduces a pioneering approach to enhance survival prediction models for gastric and Colon adenocarcinoma patients. Leveraging advanced image analysis techniques, we sliced whole slide images (WSI) of these cancers, extracting comprehensive features to capture nuanced tumor characteristics. Subsequently, we constructed patient-level graphs, encapsulating intricate spatial relationships within tumor tissues. These graphs served as inputs for a sophisticated 4-layer graph convolutional neural network (GCN), designed to exploit the inherent connectivity of the data for comprehensive analysis and prediction. By integrating patients' total survival time and survival status, we computed C-index values for gastric cancer and Colon adenocarcinoma, yielding 0.57 and 0.64, respectively. Significantly surpassing previous convolutional neural network models, these results underscore the efficacy of our approach in accurately predicting patient survival outcomes. This research holds profound implications for both the medical and AI communities, offering insights into cancer biology and progression while advancing personalized treatment strategies. Ultimately, our study represents a significant stride in leveraging AI-driven methodologies to revolutionize cancer prognosis and improve patient outcomes on a global scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
诚心的梅发布了新的文献求助10
刚刚
1秒前
Orange应助orange9采纳,获得10
1秒前
啦啦啦啦啦完成签到,获得积分10
2秒前
天侠客完成签到,获得积分10
4秒前
Hey发布了新的文献求助10
4秒前
我是老大应助Tim采纳,获得10
5秒前
JJ完成签到,获得积分10
5秒前
王哈哈发布了新的文献求助10
6秒前
酷波er应助NGU采纳,获得10
6秒前
6秒前
6秒前
打打应助lvsehx采纳,获得10
7秒前
科研破忒头完成签到,获得积分10
8秒前
8秒前
李健的小迷弟应助梓棋采纳,获得10
9秒前
wanci应助咸鱼不翻身采纳,获得10
9秒前
隐形曼青应助smile采纳,获得10
10秒前
李爱国应助如意秋珊采纳,获得10
10秒前
Lee完成签到,获得积分10
11秒前
14秒前
531完成签到,获得积分10
15秒前
15秒前
17秒前
17秒前
xixi完成签到,获得积分10
18秒前
18秒前
发发发完成签到 ,获得积分10
18秒前
帅帅子完成签到,获得积分10
18秒前
18秒前
19秒前
江小白发布了新的文献求助10
19秒前
20秒前
机械师简发布了新的文献求助20
20秒前
21秒前
危机的河马完成签到,获得积分10
21秒前
21秒前
王哈哈完成签到,获得积分20
21秒前
NGU发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297298
求助须知:如何正确求助?哪些是违规求助? 4446207
关于积分的说明 13838799
捐赠科研通 4331371
什么是DOI,文献DOI怎么找? 2377578
邀请新用户注册赠送积分活动 1372834
关于科研通互助平台的介绍 1338403