Survival Prediction Across Diverse Cancer Types Using Neural Networks

人工神经网络 计算机科学 人工智能 癌症 机器学习 生物 遗传学
作者
Xu Yan,Weimin Wang,Mingxuan Xiao,Y Li,Min Gao
标识
DOI:10.1145/3653946.3653966
摘要

Gastric cancer and Colon adenocarcinoma represent widespread and challenging malignancies with high mortality rates and complex treatment landscapes. In response to the critical need for accurate prognosis in cancer patients, the medical community has embraced the 5-year survival rate as a vital metric for estimating patient outcomes. This study introduces a pioneering approach to enhance survival prediction models for gastric and Colon adenocarcinoma patients. Leveraging advanced image analysis techniques, we sliced whole slide images (WSI) of these cancers, extracting comprehensive features to capture nuanced tumor characteristics. Subsequently, we constructed patient-level graphs, encapsulating intricate spatial relationships within tumor tissues. These graphs served as inputs for a sophisticated 4-layer graph convolutional neural network (GCN), designed to exploit the inherent connectivity of the data for comprehensive analysis and prediction. By integrating patients' total survival time and survival status, we computed C-index values for gastric cancer and Colon adenocarcinoma, yielding 0.57 and 0.64, respectively. Significantly surpassing previous convolutional neural network models, these results underscore the efficacy of our approach in accurately predicting patient survival outcomes. This research holds profound implications for both the medical and AI communities, offering insights into cancer biology and progression while advancing personalized treatment strategies. Ultimately, our study represents a significant stride in leveraging AI-driven methodologies to revolutionize cancer prognosis and improve patient outcomes on a global scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
机灵人雄发布了新的文献求助10
1秒前
Mohr关注了科研通微信公众号
1秒前
斯文败类应助wu采纳,获得10
1秒前
赘婿应助钻石棋采纳,获得10
1秒前
1秒前
2秒前
天天快乐应助666ll采纳,获得10
2秒前
慕青应助曾曾采纳,获得10
2秒前
所所应助涛1采纳,获得10
2秒前
3秒前
Kan发布了新的文献求助10
3秒前
白羽发布了新的文献求助10
4秒前
Sajid发布了新的文献求助10
4秒前
卡卡卡西西完成签到,获得积分10
4秒前
Zx_1993应助YUZ采纳,获得50
4秒前
通行证完成签到,获得积分10
4秒前
鳗鱼中心完成签到,获得积分10
5秒前
挖井的人发布了新的文献求助10
5秒前
159发布了新的文献求助10
6秒前
啦啦啦发布了新的文献求助10
6秒前
墩墩完成签到,获得积分10
7秒前
小蘑菇应助Bgeelyu采纳,获得20
7秒前
红领巾发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
米里迷路完成签到,获得积分10
10秒前
10秒前
10秒前
18岁的王教授完成签到,获得积分10
11秒前
12秒前
无花果应助大意的怀柔采纳,获得10
12秒前
12秒前
Gin发布了新的文献求助10
12秒前
12秒前
白羽完成签到,获得积分10
12秒前
Akim应助拒绝去偏旁采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258146
求助须知:如何正确求助?哪些是违规求助? 4420085
关于积分的说明 13759156
捐赠科研通 4293598
什么是DOI,文献DOI怎么找? 2356080
邀请新用户注册赠送积分活动 1352449
关于科研通互助平台的介绍 1313237