Survival Prediction Across Diverse Cancer Types Using Neural Networks

人工神经网络 计算机科学 人工智能 癌症 机器学习 生物 遗传学
作者
Xu Yan,Weimin Wang,Mingxuan Xiao,Y Li,Min Gao
标识
DOI:10.1145/3653946.3653966
摘要

Gastric cancer and Colon adenocarcinoma represent widespread and challenging malignancies with high mortality rates and complex treatment landscapes. In response to the critical need for accurate prognosis in cancer patients, the medical community has embraced the 5-year survival rate as a vital metric for estimating patient outcomes. This study introduces a pioneering approach to enhance survival prediction models for gastric and Colon adenocarcinoma patients. Leveraging advanced image analysis techniques, we sliced whole slide images (WSI) of these cancers, extracting comprehensive features to capture nuanced tumor characteristics. Subsequently, we constructed patient-level graphs, encapsulating intricate spatial relationships within tumor tissues. These graphs served as inputs for a sophisticated 4-layer graph convolutional neural network (GCN), designed to exploit the inherent connectivity of the data for comprehensive analysis and prediction. By integrating patients' total survival time and survival status, we computed C-index values for gastric cancer and Colon adenocarcinoma, yielding 0.57 and 0.64, respectively. Significantly surpassing previous convolutional neural network models, these results underscore the efficacy of our approach in accurately predicting patient survival outcomes. This research holds profound implications for both the medical and AI communities, offering insights into cancer biology and progression while advancing personalized treatment strategies. Ultimately, our study represents a significant stride in leveraging AI-driven methodologies to revolutionize cancer prognosis and improve patient outcomes on a global scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZGY完成签到,获得积分10
刚刚
Guojingyu发布了新的文献求助10
2秒前
WJQ完成签到,获得积分10
3秒前
4秒前
5秒前
田様应助xiuwenli采纳,获得10
5秒前
6秒前
7秒前
Criminology34应助SA采纳,获得10
8秒前
9秒前
小小发布了新的文献求助10
9秒前
Guojingyu完成签到,获得积分10
9秒前
爱静静完成签到,获得积分0
11秒前
ttjek发布了新的文献求助10
11秒前
nojivv完成签到,获得积分10
12秒前
12完成签到,获得积分10
12秒前
ghhhn发布了新的文献求助10
13秒前
suliuyin完成签到 ,获得积分10
13秒前
14秒前
16秒前
未来的幻想完成签到,获得积分10
17秒前
浮游应助星星点点1234采纳,获得10
18秒前
19秒前
19秒前
赖嘉顿完成签到 ,获得积分10
20秒前
QQ完成签到 ,获得积分10
20秒前
一一发布了新的文献求助10
21秒前
21秒前
xiuwenli发布了新的文献求助10
21秒前
Murphy完成签到,获得积分10
23秒前
胡豆豆发布了新的文献求助10
24秒前
贾慧莲完成签到,获得积分10
24秒前
25秒前
25秒前
26秒前
26秒前
jeronimo完成签到,获得积分10
27秒前
27秒前
蒋俊杰完成签到,获得积分10
27秒前
28秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5224818
求助须知:如何正确求助?哪些是违规求助? 4396749
关于积分的说明 13684880
捐赠科研通 4261194
什么是DOI,文献DOI怎么找? 2338338
邀请新用户注册赠送积分活动 1335711
关于科研通互助平台的介绍 1291564