Engineering growth factor ligands and receptors for therapeutic innovation

受体 生长因子 计算生物学 化学 细胞生物学 生物 生物化学
作者
Xinran An,Justin Paoloni,Yuseong Oh,Jamie B. Spangler
出处
期刊:Trends in cancer [Elsevier BV]
标识
DOI:10.1016/j.trecan.2024.09.006
摘要

HighlightsGrowth factors play pivotal roles in controlling cellular activities in the context of health and disease, and serve as a crucial therapeutic target in cancer.Engineering natural growth factor ligands or receptors represents a promising and emerging approach within the realm of molecular design.Several growth factor pathways have been engineered for therapeutic development, including the vascular endothelial growth factor, epidermal growth factor, nerve growth factor, platelet-derived growth factor, and insulin-like growth factor systems.Strategies for engineering growth factor receptors include the design of decoy receptors to sequester growth factor ligands and vaccines that incorporate mutated growth factor receptor fragments.Strategies for engineering growth factor ligands include molecular fusions, dual specificity formulations, and affinity modulation.AbstractGrowth factors signal through engagement and activation of their respective cell surface receptors to choreograph an array of cellular functions, including proliferation, growth, repair, migration, differentiation, and survival. Because of their vital role in determining cell fate and maintaining homeostasis, dysregulation of growth factor pathways leads to the development and/or progression of disease, particularly in the context of cancer. Exciting advances in protein engineering technologies have enabled innovative strategies to redesign naturally occurring growth factor ligands and receptors as targeted therapeutics. We review growth factor protein engineering efforts, including affinity modulation, molecular fusion, the design of decoy receptors, dual specificity constructs, and vaccines. Collectively, these approaches are catapulting next-generation drugs to treat cancer and a host of other conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
江小鱼发布了新的文献求助10
刚刚
ding应助活力的驳采纳,获得10
1秒前
qk完成签到,获得积分10
1秒前
1秒前
1秒前
马师发布了新的文献求助10
2秒前
慈祥的发卡完成签到 ,获得积分10
3秒前
fanghao发布了新的文献求助10
4秒前
6秒前
7秒前
8秒前
爆米花应助摆渡人采纳,获得20
9秒前
与我常在发布了新的文献求助10
11秒前
桐桐应助飞云之下采纳,获得30
12秒前
11发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
14秒前
壮观凡松完成签到,获得积分20
15秒前
15秒前
yydragen应助机灵柚子采纳,获得50
16秒前
16秒前
16秒前
和谐谷蕊发布了新的文献求助30
16秒前
998172发布了新的文献求助10
18秒前
科研通AI2S应助咚咚咚采纳,获得10
18秒前
满意花生完成签到,获得积分10
20秒前
壮观凡松发布了新的文献求助10
20秒前
Self-made发布了新的文献求助10
21秒前
0015发布了新的文献求助10
23秒前
幽默的宛白完成签到,获得积分10
23秒前
25秒前
冷酷问柳完成签到,获得积分20
28秒前
钦林完成签到,获得积分10
30秒前
<小天才>发布了新的文献求助10
31秒前
31秒前
钦林发布了新的文献求助10
34秒前
34秒前
raptor发布了新的文献求助10
37秒前
深味i完成签到,获得积分10
38秒前
11完成签到,获得积分20
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959733
求助须知:如何正确求助?哪些是违规求助? 3506004
关于积分的说明 11127299
捐赠科研通 3237957
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803000