Exploiting the efficiency of narrow band gap S-doped g-C3N4/Expanded Perlite/Red Ocher nanocomposite for high-level eliminating halogenated dye in Cool‐White‐SMD/H2O2 system

珍珠岩 纳米复合材料 光催化 可见光谱 光电流 兴奋剂 材料科学 带隙 光化学 纳米颗粒 纳米技术 化学工程 化学 催化作用 光电子学 复合材料 有机化学 工程类
作者
Abdolreza Tarighati Sareshkeh,Mohammad Hossein Rasoulifard,Alireza Abdi,Mir Saeed Seyed Dorraji,Seyyedeh Fatemeh Hosseini
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:1005: 175822-175822 被引量:2
标识
DOI:10.1016/j.jallcom.2024.175822
摘要

Hitherto, constructing prominent visible-light-driven g-C3N4/soil composites still suffers from several intricacies, including low specific surface area, inadequate charge separation, and a high band gap energy (Eg >2.7 eV). To address these drawbacks, sulfur atoms were introduced into g-C3N4 (S-doped g-C3N4 or SCN); thereby, Red Ocher (RO) and Expanded Perlite (EP) were grafted to SCN, which the engineered SCN/10EP/20RO nanocomposite divulged a higher specific surface area, further light-harvesting capability, narrower Eg, prolonged charge recombination process, lower the charge transfer resistance, and higher photocurrent density than bulk g-C3N4 (CN). Additionally, the formed S-scheme charge migration mechanism and the hole-trapping role of the hydroxyl functional groups synergistically engendered robust visible-light-driven catalytic performances under visible-light exposure. By enabling the heterogeneous photo-Fenton-like process, the Methylene Blue removal efficiency (MBRE) and the Total Organic Carbon (TOC) decontamination promptly elevated to 99.6% and 87.7% within 90 min under Cool-White-SMD/H2O2 condition, respectively. Manifestly, the kinetic reaction rate of the photo-Fenton-like process was 7.5 times higher than the primary photocatalysis, showcasing HO•had a determining role towards decent decomposing MB. After overviewing, our detailed findings straightforwardly corroborated that SCN/10EP/20RO nanocomposite would be an efficient, long-lasting, and green photocatalyst for eradicating halogenated organic pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助misalia采纳,获得10
1秒前
1秒前
wyf完成签到,获得积分10
1秒前
2秒前
无敌小邓历险记完成签到,获得积分10
2秒前
2秒前
2秒前
小白菜完成签到,获得积分10
3秒前
猫猫发布了新的文献求助10
3秒前
酷波er应助是漏漏呀采纳,获得10
3秒前
zxd1999完成签到,获得积分10
3秒前
芽芽豆发布了新的文献求助10
4秒前
4秒前
ZZJ发布了新的文献求助10
4秒前
4秒前
5秒前
陈东东发布了新的文献求助30
5秒前
不朽阳神完成签到,获得积分10
6秒前
6秒前
我爱科研完成签到 ,获得积分10
6秒前
起床做核酸完成签到,获得积分10
6秒前
小先完成签到,获得积分10
7秒前
搜集达人应助猫猫采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
chiahaokuo发布了新的文献求助10
8秒前
9秒前
9秒前
小白菜发布了新的文献求助100
9秒前
hj456完成签到,获得积分10
10秒前
11秒前
迟大猫应助苞大米采纳,获得10
11秒前
11秒前
小二郎应助任伟超采纳,获得10
11秒前
DY发布了新的文献求助10
11秒前
13秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
陈东东完成签到,获得积分10
14秒前
orixero应助ZZJ采纳,获得10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663010
求助须知:如何正确求助?哪些是违规求助? 3223738
关于积分的说明 9753126
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606294
邀请新用户注册赠送积分活动 758404
科研通“疑难数据库(出版商)”最低求助积分说明 734792