Adaptive dynamic inference for few-shot left atrium segmentation

推论 分割 人工智能 弹丸 计算机视觉 计算机科学 数学 模式识别(心理学) 材料科学 冶金
作者
Jun Chen,Xuejiao Li,Heye Zhang,Yongwon Cho,Sung Ho Hwang,Zhifan Gao,Guang Yang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:98: 103321-103321 被引量:1
标识
DOI:10.1016/j.media.2024.103321
摘要

Accurate segmentation of the left atrium (LA) from late gadolinium-enhanced cardiac magnetic resonance (LGE CMR) images is crucial for aiding the treatment of patients with atrial fibrillation. Few-shot learning holds significant potential for achieving accurate LA segmentation with low demand on high-cost labeled LGE CMR data and fast generalization across different centers. However, accurate LA segmentation with few-shot learning is a challenging task due to the low-intensity contrast between the LA and other neighboring organs in LGE CMR images. To address this issue, we propose an Adaptive Dynamic Inference Network (ADINet) that explicitly models the differences between the foreground and background. Specifically, ADINet leverages dynamic collaborative inference (DCI) and dynamic reverse inference (DRI) to adaptively allocate semantic-aware and spatial-specific convolution weights and indication information. These allocations are conditioned on the support foreground and background knowledge, utilizing pixel-wise correlations, for different spatial positions of query images. The convolution weights adapt to different visual patterns based on spatial positions, enabling effective encoding of differences between foreground and background regions. Meanwhile, the indication information adapts to the background visual pattern to reversely decode foreground LA regions, leveraging their spatial complementarity. To promote the learning of ADINet, we propose hierarchical supervision, which enforces spatial consistency and differences between the background and foreground regions through pixel-wise semantic supervision and pixel-pixel correlation supervision. We demonstrated the performance of ADINet on three LGE CMR datasets from different centers. Compared to state-of-the-art methods with ten available samples, ADINet yielded better segmentation performance in terms of four metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
受伤芝麻完成签到,获得积分10
刚刚
FN关注了科研通微信公众号
1秒前
ygm发布了新的文献求助20
1秒前
大个应助一水独流采纳,获得10
1秒前
derek10086完成签到,获得积分10
1秒前
133发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
i的问题发布了新的文献求助10
3秒前
再沉默完成签到,获得积分10
3秒前
祺君发布了新的文献求助10
4秒前
4秒前
Pzuzu完成签到,获得积分10
5秒前
结实白柏完成签到,获得积分10
6秒前
Owen应助zss采纳,获得10
6秒前
6秒前
英姑应助清欢采纳,获得10
6秒前
在水一方应助清欢采纳,获得10
6秒前
6秒前
6秒前
7秒前
段凯发布了新的文献求助10
7秒前
Beatrice发布了新的文献求助20
7秒前
纷雪完成签到,获得积分10
7秒前
暖阳发布了新的文献求助10
7秒前
笨笨慕山完成签到,获得积分10
7秒前
7秒前
8秒前
杨诗梦完成签到,获得积分10
8秒前
风中冰香应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285822
求助须知:如何正确求助?哪些是违规求助? 4438771
关于积分的说明 13818542
捐赠科研通 4320267
什么是DOI,文献DOI怎么找? 2371363
邀请新用户注册赠送积分活动 1366932
关于科研通互助平台的介绍 1330369