Adaptive dynamic inference for few-shot left atrium segmentation

推论 分割 人工智能 弹丸 计算机视觉 计算机科学 数学 模式识别(心理学) 材料科学 冶金
作者
Jun Chen,Xuejiao Li,Heye Zhang,Yongwon Cho,Sung Ho Hwang,Zhifan Gao,Guang Yang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:98: 103321-103321 被引量:1
标识
DOI:10.1016/j.media.2024.103321
摘要

Accurate segmentation of the left atrium (LA) from late gadolinium-enhanced cardiac magnetic resonance (LGE CMR) images is crucial for aiding the treatment of patients with atrial fibrillation. Few-shot learning holds significant potential for achieving accurate LA segmentation with low demand on high-cost labeled LGE CMR data and fast generalization across different centers. However, accurate LA segmentation with few-shot learning is a challenging task due to the low-intensity contrast between the LA and other neighboring organs in LGE CMR images. To address this issue, we propose an Adaptive Dynamic Inference Network (ADINet) that explicitly models the differences between the foreground and background. Specifically, ADINet leverages dynamic collaborative inference (DCI) and dynamic reverse inference (DRI) to adaptively allocate semantic-aware and spatial-specific convolution weights and indication information. These allocations are conditioned on the support foreground and background knowledge, utilizing pixel-wise correlations, for different spatial positions of query images. The convolution weights adapt to different visual patterns based on spatial positions, enabling effective encoding of differences between foreground and background regions. Meanwhile, the indication information adapts to the background visual pattern to reversely decode foreground LA regions, leveraging their spatial complementarity. To promote the learning of ADINet, we propose hierarchical supervision, which enforces spatial consistency and differences between the background and foreground regions through pixel-wise semantic supervision and pixel-pixel correlation supervision. We demonstrated the performance of ADINet on three LGE CMR datasets from different centers. Compared to state-of-the-art methods with ten available samples, ADINet yielded better segmentation performance in terms of four metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
XY关注了科研通微信公众号
1秒前
Adrenaline发布了新的文献求助10
1秒前
2秒前
所所应助123_采纳,获得30
2秒前
人人人安安安安安完成签到,获得积分10
2秒前
cc发布了新的文献求助10
2秒前
碎碎念发布了新的文献求助10
2秒前
茶叙汤言发布了新的文献求助10
3秒前
3秒前
SciGPT应助一一采纳,获得10
3秒前
kkk完成签到,获得积分10
3秒前
wise111发布了新的文献求助10
4秒前
4秒前
sleep应助咦yiyi采纳,获得10
4秒前
4秒前
4秒前
靓丽万宝路完成签到,获得积分10
6秒前
达克赛德完成签到 ,获得积分10
7秒前
kkk发布了新的文献求助10
7秒前
8秒前
Adrenaline完成签到,获得积分10
9秒前
Akim应助cc采纳,获得10
10秒前
junyang发布了新的文献求助10
10秒前
百事可乐发布了新的文献求助10
12秒前
wise111发布了新的文献求助10
13秒前
sansronds发布了新的文献求助10
13秒前
14秒前
15秒前
sasamuxi完成签到 ,获得积分10
16秒前
17秒前
wentong完成签到,获得积分10
17秒前
传奇3应助一品真意采纳,获得10
17秒前
Lucas应助ffjx采纳,获得10
17秒前
Hwjysh发布了新的文献求助10
20秒前
gsgg完成签到 ,获得积分20
20秒前
一一发布了新的文献求助10
20秒前
KJ完成签到,获得积分10
21秒前
21秒前
22秒前
23秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501789
求助须知:如何正确求助?哪些是违规求助? 4597876
关于积分的说明 14461669
捐赠科研通 4531433
什么是DOI,文献DOI怎么找? 2483369
邀请新用户注册赠送积分活动 1466861
关于科研通互助平台的介绍 1439478