Adaptive dynamic inference for few-shot left atrium segmentation

推论 分割 人工智能 弹丸 计算机视觉 计算机科学 数学 模式识别(心理学) 材料科学 冶金
作者
Jun Chen,Xuejiao Li,Heye Zhang,Yongwon Cho,Sung Ho Hwang,Zhifan Gao,Guang Yang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:98: 103321-103321 被引量:1
标识
DOI:10.1016/j.media.2024.103321
摘要

Accurate segmentation of the left atrium (LA) from late gadolinium-enhanced cardiac magnetic resonance (LGE CMR) images is crucial for aiding the treatment of patients with atrial fibrillation. Few-shot learning holds significant potential for achieving accurate LA segmentation with low demand on high-cost labeled LGE CMR data and fast generalization across different centers. However, accurate LA segmentation with few-shot learning is a challenging task due to the low-intensity contrast between the LA and other neighboring organs in LGE CMR images. To address this issue, we propose an Adaptive Dynamic Inference Network (ADINet) that explicitly models the differences between the foreground and background. Specifically, ADINet leverages dynamic collaborative inference (DCI) and dynamic reverse inference (DRI) to adaptively allocate semantic-aware and spatial-specific convolution weights and indication information. These allocations are conditioned on the support foreground and background knowledge, utilizing pixel-wise correlations, for different spatial positions of query images. The convolution weights adapt to different visual patterns based on spatial positions, enabling effective encoding of differences between foreground and background regions. Meanwhile, the indication information adapts to the background visual pattern to reversely decode foreground LA regions, leveraging their spatial complementarity. To promote the learning of ADINet, we propose hierarchical supervision, which enforces spatial consistency and differences between the background and foreground regions through pixel-wise semantic supervision and pixel-pixel correlation supervision. We demonstrated the performance of ADINet on three LGE CMR datasets from different centers. Compared to state-of-the-art methods with ten available samples, ADINet yielded better segmentation performance in terms of four metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助欣喜机器猫采纳,获得10
1秒前
5秒前
5秒前
23421完成签到,获得积分10
6秒前
Ava应助qinjiayin采纳,获得10
7秒前
成就的笑南完成签到 ,获得积分10
8秒前
9秒前
shinn发布了新的文献求助10
10秒前
huisu发布了新的文献求助10
11秒前
火星上冥茗完成签到,获得积分10
14秒前
yx_cheng应助terryok采纳,获得30
14秒前
叶子的叶完成签到,获得积分10
17秒前
yyauthor发布了新的文献求助20
17秒前
没有银完成签到,获得积分10
18秒前
上官若男应助shinn采纳,获得10
18秒前
忐忑的新蕾完成签到 ,获得积分10
19秒前
bkagyin应助allofme采纳,获得10
19秒前
科研通AI2S应助yuqinghui98采纳,获得10
20秒前
20秒前
1111完成签到,获得积分20
22秒前
老实向雁完成签到,获得积分10
23秒前
23秒前
LIN完成签到,获得积分10
24秒前
yx_cheng应助鲜于枫采纳,获得200
25秒前
白羊完成签到,获得积分10
27秒前
贪玩的醉波完成签到,获得积分10
27秒前
orixero应助goodgay133采纳,获得10
27秒前
臻灏完成签到,获得积分10
28秒前
28秒前
29秒前
31秒前
shinn发布了新的文献求助10
31秒前
深情安青应助二十四桥采纳,获得10
33秒前
人生有味是清欢完成签到,获得积分10
34秒前
qweer发布了新的文献求助10
34秒前
罗wq发布了新的文献求助10
34秒前
36秒前
陶贻亮发布了新的文献求助10
36秒前
大松鼠发布了新的文献求助20
36秒前
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967156
求助须知:如何正确求助?哪些是违规求助? 3512491
关于积分的说明 11163601
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804468