Adaptive dynamic inference for few-shot left atrium segmentation

推论 分割 人工智能 弹丸 计算机视觉 计算机科学 数学 模式识别(心理学) 材料科学 冶金
作者
Jun Chen,X. Li,Heye Zhang,Yongwon Cho,Sung Ho Hwang,Zhifan Gao,Guang Yang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:98: 103321-103321
标识
DOI:10.1016/j.media.2024.103321
摘要

Accurate segmentation of the left atrium (LA) from late gadolinium-enhanced cardiac magnetic resonance (LGE CMR) images is crucial for aiding the treatment of patients with atrial fibrillation. Few-shot learning holds significant potential for achieving accurate LA segmentation with low demand on high-cost labeled LGE CMR data and fast generalization across different centers. However, accurate LA segmentation with few-shot learning is a challenging task due to the low-intensity contrast between the LA and other neighboring organs in LGE CMR images. To address this issue, we propose an Adaptive Dynamic Inference Network (ADINet) that explicitly models the differences between the foreground and background. Specifically, ADINet leverages dynamic collaborative inference (DCI) and dynamic reverse inference (DRI) to adaptively allocate semantic-aware and spatial-specific convolution weights and indication information. These allocations are conditioned on the support foreground and background knowledge, utilizing pixel-wise correlations, for different spatial positions of query images. The convolution weights adapt to different visual patterns based on spatial positions, enabling effective encoding of differences between foreground and background regions. Meanwhile, the indication information adapts to the background visual pattern to reversely decode foreground LA regions, leveraging their spatial complementarity. To promote the learning of ADINet, we propose hierarchical supervision, which enforces spatial consistency and differences between the background and foreground regions through pixel-wise semantic supervision and pixel-pixel correlation supervision. We demonstrated the performance of ADINet on three LGE CMR datasets from different centers. Compared to state-of-the-art methods with ten available samples, ADINet yielded better segmentation performance in terms of four metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莱雅lyre完成签到,获得积分10
刚刚
玩命的毛衣完成签到 ,获得积分10
2秒前
XWY发布了新的文献求助30
2秒前
2秒前
Esang完成签到,获得积分10
3秒前
求是鸡求食完成签到,获得积分10
3秒前
苏11发布了新的文献求助10
3秒前
zhanjl13完成签到,获得积分10
4秒前
XinyiZhang完成签到,获得积分10
4秒前
guobin发布了新的文献求助10
4秒前
wren完成签到,获得积分10
5秒前
5秒前
柠檬酸完成签到,获得积分10
5秒前
宗笑晴完成签到,获得积分10
6秒前
GGbond完成签到,获得积分10
6秒前
諵十一完成签到,获得积分10
6秒前
6秒前
flora应助梨涡采纳,获得10
6秒前
沈佳琪完成签到,获得积分20
7秒前
heng发布了新的文献求助10
7秒前
Akim应助iufan采纳,获得10
8秒前
zyc发布了新的文献求助10
8秒前
阳光彩虹小白马完成签到,获得积分10
8秒前
竭缘完成签到,获得积分10
8秒前
CipherSage应助RUI采纳,获得10
8秒前
一天一个苹果儿完成签到 ,获得积分10
9秒前
不会取名字完成签到,获得积分10
9秒前
9秒前
towanda完成签到,获得积分10
9秒前
慕青应助快乐小熊猫采纳,获得10
9秒前
L~完成签到,获得积分10
9秒前
丘比特应助TiAmo采纳,获得10
10秒前
10秒前
10秒前
大爱仙尊完成签到,获得积分10
12秒前
12秒前
充电宝应助轻松的忆雪采纳,获得10
12秒前
HH发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134416
求助须知:如何正确求助?哪些是违规求助? 2785328
关于积分的说明 7771336
捐赠科研通 2440922
什么是DOI,文献DOI怎么找? 1297593
科研通“疑难数据库(出版商)”最低求助积分说明 625007
版权声明 600792