亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive dynamic inference for few-shot left atrium segmentation

推论 分割 人工智能 弹丸 计算机视觉 计算机科学 数学 模式识别(心理学) 材料科学 冶金
作者
Jun Chen,Xuejiao Li,Heye Zhang,Yongwon Cho,Sung Ho Hwang,Zhifan Gao,Guang Yang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:98: 103321-103321 被引量:1
标识
DOI:10.1016/j.media.2024.103321
摘要

Accurate segmentation of the left atrium (LA) from late gadolinium-enhanced cardiac magnetic resonance (LGE CMR) images is crucial for aiding the treatment of patients with atrial fibrillation. Few-shot learning holds significant potential for achieving accurate LA segmentation with low demand on high-cost labeled LGE CMR data and fast generalization across different centers. However, accurate LA segmentation with few-shot learning is a challenging task due to the low-intensity contrast between the LA and other neighboring organs in LGE CMR images. To address this issue, we propose an Adaptive Dynamic Inference Network (ADINet) that explicitly models the differences between the foreground and background. Specifically, ADINet leverages dynamic collaborative inference (DCI) and dynamic reverse inference (DRI) to adaptively allocate semantic-aware and spatial-specific convolution weights and indication information. These allocations are conditioned on the support foreground and background knowledge, utilizing pixel-wise correlations, for different spatial positions of query images. The convolution weights adapt to different visual patterns based on spatial positions, enabling effective encoding of differences between foreground and background regions. Meanwhile, the indication information adapts to the background visual pattern to reversely decode foreground LA regions, leveraging their spatial complementarity. To promote the learning of ADINet, we propose hierarchical supervision, which enforces spatial consistency and differences between the background and foreground regions through pixel-wise semantic supervision and pixel-pixel correlation supervision. We demonstrated the performance of ADINet on three LGE CMR datasets from different centers. Compared to state-of-the-art methods with ten available samples, ADINet yielded better segmentation performance in terms of four metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
karstbing发布了新的文献求助10
17秒前
cy0824完成签到 ,获得积分10
18秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
Achuia完成签到,获得积分10
2分钟前
2分钟前
程若男完成签到,获得积分10
2分钟前
小唐完成签到,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
汉堡包应助Fairy采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Akim应助lngenuo采纳,获得30
4分钟前
4分钟前
4分钟前
4分钟前
Wei发布了新的文献求助10
4分钟前
4分钟前
Fairy发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
5分钟前
hb完成签到,获得积分10
5分钟前
紫熊完成签到,获得积分10
5分钟前
啸西风完成签到,获得积分10
5分钟前
孙严青完成签到,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
wanci应助野性的少司缘采纳,获得10
7分钟前
7分钟前
7分钟前
William完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714938
求助须知:如何正确求助?哪些是违规求助? 5228707
关于积分的说明 15273909
捐赠科研通 4866079
什么是DOI,文献DOI怎么找? 2612676
邀请新用户注册赠送积分活动 1562848
关于科研通互助平台的介绍 1520139