Adaptive dynamic inference for few-shot left atrium segmentation

推论 分割 人工智能 弹丸 计算机视觉 计算机科学 数学 模式识别(心理学) 材料科学 冶金
作者
Jun Chen,Xuejiao Li,Heye Zhang,Yongwon Cho,Sung Ho Hwang,Zhifan Gao,Guang Yang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:98: 103321-103321
标识
DOI:10.1016/j.media.2024.103321
摘要

Accurate segmentation of the left atrium (LA) from late gadolinium-enhanced cardiac magnetic resonance (LGE CMR) images is crucial for aiding the treatment of patients with atrial fibrillation. Few-shot learning holds significant potential for achieving accurate LA segmentation with low demand on high-cost labeled LGE CMR data and fast generalization across different centers. However, accurate LA segmentation with few-shot learning is a challenging task due to the low-intensity contrast between the LA and other neighboring organs in LGE CMR images. To address this issue, we propose an Adaptive Dynamic Inference Network (ADINet) that explicitly models the differences between the foreground and background. Specifically, ADINet leverages dynamic collaborative inference (DCI) and dynamic reverse inference (DRI) to adaptively allocate semantic-aware and spatial-specific convolution weights and indication information. These allocations are conditioned on the support foreground and background knowledge, utilizing pixel-wise correlations, for different spatial positions of query images. The convolution weights adapt to different visual patterns based on spatial positions, enabling effective encoding of differences between foreground and background regions. Meanwhile, the indication information adapts to the background visual pattern to reversely decode foreground LA regions, leveraging their spatial complementarity. To promote the learning of ADINet, we propose hierarchical supervision, which enforces spatial consistency and differences between the background and foreground regions through pixel-wise semantic supervision and pixel-pixel correlation supervision. We demonstrated the performance of ADINet on three LGE CMR datasets from different centers. Compared to state-of-the-art methods with ten available samples, ADINet yielded better segmentation performance in terms of four metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛虫虫发布了新的文献求助30
刚刚
刚刚
柔弱飞雪完成签到,获得积分10
刚刚
一种信仰完成签到 ,获得积分10
刚刚
1秒前
1秒前
2秒前
YE完成签到,获得积分10
2秒前
2鱼完成签到,获得积分10
2秒前
FooLeup立仔完成签到,获得积分10
2秒前
3秒前
顾矜应助JUll采纳,获得10
3秒前
Amai发布了新的文献求助20
3秒前
小马甲应助Lucas采纳,获得10
3秒前
4秒前
zZ发布了新的文献求助10
4秒前
qi完成签到,获得积分10
5秒前
标致缘郡发布了新的文献求助10
5秒前
miawei完成签到,获得积分10
6秒前
6秒前
wangfu发布了新的文献求助10
6秒前
明理依云完成签到,获得积分10
6秒前
6秒前
7秒前
二世小卒完成签到 ,获得积分10
7秒前
和谐乌龟完成签到,获得积分10
8秒前
阳尧完成签到,获得积分10
8秒前
帅气惜霜发布了新的文献求助10
8秒前
8秒前
kkkklo发布了新的文献求助30
10秒前
传奇3应助润润轩轩采纳,获得10
10秒前
10秒前
12秒前
和谐乌龟发布了新的文献求助10
12秒前
zZ完成签到,获得积分10
12秒前
科研小白完成签到,获得积分10
12秒前
LYY发布了新的文献求助10
13秒前
wangfu完成签到,获得积分10
13秒前
ding应助Dddd采纳,获得10
14秒前
yin发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794