亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Image Copy-Move Forgery Detection via Deep PatchMatch and Pairwise Ranking Learning

人工智能 成对比较 模式识别(心理学) 计算机科学 计算机视觉 排名(信息检索) 图像(数学) 数学
作者
Yuanman Li,Yingjie He,Changsheng Chen,Li Dong,Bin Li,Jiantao Zhou,Xia Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2024.3482191
摘要

Recent advances in deep learning algorithms have shown impressive progress in image copy-move forgery detection (CMFD). However, these algorithms lack generalizability in practical scenarios where the copied regions are not present in the training images, or the cloned regions are part of the background. Additionally, these algorithms utilize convolution operations to distinguish source and target regions, leading to unsatisfactory results when the target regions blend well with the background. To address these limitations, this study proposes a novel end-to-end CMFD framework that integrates the strengths of conventional and deep learning methods. Specifically, the study develops a deep cross-scale PatchMatch (PM) method that is customized for CMFD to locate copy-move regions. Unlike existing deep models, our approach utilizes features extracted from high-resolution scales to seek explicit and reliable point-to-point matching between source and target regions. Furthermore, we propose a novel pairwise rank learning framework to separate source and target regions. By leveraging the strong prior of point-to-point matches, the framework can identify subtle differences and effectively discriminate between source and target regions, even when the target regions blend well with the background. Our framework is fully differentiable and can be trained end-to-end. Comprehensive experimental results highlight the remarkable generalizability of our scheme across various copy-move scenarios, significantly outperforming existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
37秒前
38秒前
zz发布了新的文献求助10
42秒前
Polymer72应助zz采纳,获得20
46秒前
48秒前
李哲发布了新的文献求助10
1分钟前
gwbk完成签到,获得积分10
1分钟前
1分钟前
Polymer72应助科研通管家采纳,获得10
1分钟前
Polymer72应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
李哲完成签到,获得积分10
1分钟前
1分钟前
飞翔的企鹅应助adcc102采纳,获得10
1分钟前
1分钟前
MchemG应助温温采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
外向的藏今完成签到 ,获得积分10
2分钟前
Polymer72应助Kitty采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
毓香谷的春天完成签到 ,获得积分0
4分钟前
4分钟前
4分钟前
5分钟前
Polymer72应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397920
求助须知:如何正确求助?哪些是违规求助? 3006928
关于积分的说明 8823494
捐赠科研通 2694272
什么是DOI,文献DOI怎么找? 1475766
科研通“疑难数据库(出版商)”最低求助积分说明 682508
邀请新用户注册赠送积分活动 675948