CADS: A Self-supervised Learner via Cross-modal Alignment and Deep Self-distillation for CT Volume Segmentation

体积热力学 人工智能 情态动词 计算机科学 分割 计算机视觉 图像分割 图像配准 模式识别(心理学) 图像(数学) 材料科学 物理 量子力学 高分子化学
作者
Yiwen Ye,Jianpeng Zhang,Ziyang Chen,Yong Xia
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3431916
摘要

Self-supervised learning (SSL) has long had great success in advancing the field of annotation-efficient learning. However, when applied to CT volume segmentation, most SSL methods suffer from two limitations, including rarely using the information acquired by different imaging modalities and providing supervision only to the bottleneck encoder layer. To address both limitations, we design a pretext task to align the information in each 3D CT volume and the corresponding 2D generated X-ray image and extend self-distillation to deep self-distillation. Thus, we propose a self-supervised learner based on Cross-modal Alignment and Deep Self-distillation (CADS) to improve the encoder's ability to characterize CT volumes. The cross-modal alignment is a more challenging pretext task that forces the encoder to learn better image representation ability. Deep self-distillation provides supervision to not only the bottleneck layer but also shallow layers, thus boosting the abilities of both. Comparative experiments show that, during pre-training, our CADS has lower computational complexity and GPU memory cost than competing SSL methods. Based on the pre-trained encoder, we construct PVT-UNet for 3D CT volume segmentation. Our results on seven downstream tasks indicate that PVT-UNet outperforms state-of-the-art SSL methods like MOCOv3 and DiRA, as well as prevalent medical image segmentation methods like nnUNet and CoTr. Code and pre-trained weight will be available at https://github.com/yeerwen/CADS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助zrw采纳,获得10
刚刚
共享精神应助无语啦采纳,获得10
1秒前
Isaac完成签到,获得积分10
1秒前
callmecjh完成签到,获得积分10
1秒前
3秒前
隐形曼青应助AlienU采纳,获得10
3秒前
4秒前
悲伤半导体应助卖粥的果采纳,获得10
4秒前
李爱国应助爱听歌笑寒采纳,获得10
4秒前
rosalieshi应助乐乐乐乐乐乐采纳,获得30
5秒前
Owen应助乐乐乐乐乐乐采纳,获得20
5秒前
丘比特应助乐乐乐乐乐乐采纳,获得10
5秒前
5秒前
英姑应助乐乐乐乐乐乐采纳,获得10
6秒前
6秒前
传奇3应助乐乐乐乐乐乐采纳,获得10
6秒前
小马甲应助乐乐乐乐乐乐采纳,获得10
6秒前
无花果应助乐乐乐乐乐乐采纳,获得10
6秒前
田様应助乐乐乐乐乐乐采纳,获得10
6秒前
6秒前
Ava应助稳重的小霜采纳,获得10
6秒前
7秒前
闪闪映易完成签到,获得积分10
7秒前
8秒前
9秒前
852应助xixiz1024采纳,获得10
9秒前
Abner完成签到,获得积分20
9秒前
yuyu完成签到,获得积分10
10秒前
无私石头完成签到,获得积分10
11秒前
王志鹏发布了新的文献求助10
11秒前
12秒前
无语啦发布了新的文献求助10
12秒前
Coco发布了新的文献求助20
13秒前
笨笨石头应助fifteen采纳,获得10
13秒前
浅夏完成签到 ,获得积分10
13秒前
格格巫完成签到 ,获得积分10
14秒前
14秒前
15秒前
123pc驳回了打打应助
16秒前
NW18完成签到,获得积分10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154374
求助须知:如何正确求助?哪些是违规求助? 2805268
关于积分的说明 7864039
捐赠科研通 2463452
什么是DOI,文献DOI怎么找? 1311340
科研通“疑难数据库(出版商)”最低求助积分说明 629556
版权声明 601821