BrainSegFounder: Towards 3D foundation models for neuroimage segmentation

计算机科学 分割 人工智能 神经影像学 医学影像学 机器学习 深度学习 模式识别(心理学) 心理学 精神科
作者
J. Charles Cox,Peng Liu,Skylar E. Stolte,Yunchao Yang,Kang Liu,Kyle B. See,Huiwen Ju,Ruogu Fang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103301-103301 被引量:8
标识
DOI:10.1016/j.media.2024.103301
摘要

The burgeoning field of brain health research increasingly leverages artificial intelligence (AI) to analyze and interpret neuroimaging data. Medical foundation models have shown promise of superior performance with better sample efficiency. This work introduces a novel approach towards creating 3-dimensional (3D) medical foundation models for multimodal neuroimage segmentation through self-supervised training. Our approach involves a novel two-stage pretraining approach using vision transformers. The first stage encodes anatomical structures in generally healthy brains from the large-scale unlabeled neuroimage dataset of multimodal brain magnetic resonance imaging (MRI) images from 41,400 participants. This stage of pertaining focuses on identifying key features such as shapes and sizes of different brain structures. The second pretraining stage identifies disease-specific attributes, such as geometric shapes of tumors and lesions and spatial placements within the brain. This dual-phase methodology significantly reduces the extensive data requirements usually necessary for AI model training in neuroimage segmentation with the flexibility to adapt to various imaging modalities. We rigorously evaluate our model, BrainSegFounder, using the Brain Tumor Segmentation (BraTS) challenge and Anatomical Tracings of Lesions After Stroke v2.0 (ATLAS v2.0) datasets. BrainSegFounder demonstrates a significant performance gain, surpassing the achievements of the previous winning solutions using fully supervised learning. Our findings underscore the impact of scaling up both the model complexity and the volume of unlabeled training data derived from generally healthy brains. Both of these factors enhance the accuracy and predictive capabilities of the model in neuroimage segmentation tasks. Our pretrained models and code are at https://github.com/lab-smile/BrainSegFounder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不能吃太饱完成签到 ,获得积分10
2秒前
buqi发布了新的文献求助10
3秒前
伶俐紫完成签到,获得积分10
4秒前
4秒前
5秒前
Annie发布了新的文献求助20
5秒前
二队淼队长完成签到,获得积分10
6秒前
我是老大应助清沧炽魂采纳,获得10
6秒前
彳亍宣完成签到 ,获得积分10
7秒前
缥缈的闭月完成签到,获得积分10
10秒前
buqi完成签到,获得积分10
10秒前
孔wj完成签到,获得积分10
11秒前
縤雨完成签到 ,获得积分10
11秒前
11秒前
Tao完成签到,获得积分10
16秒前
16秒前
黄景滨完成签到 ,获得积分10
17秒前
18秒前
wwrjj完成签到,获得积分10
19秒前
liu完成签到,获得积分10
19秒前
孤独听雨的猫完成签到 ,获得积分10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
不倦应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
21秒前
macarthur发布了新的文献求助10
21秒前
21秒前
HaojunWang完成签到 ,获得积分10
22秒前
脑洞疼应助wwrjj采纳,获得10
25秒前
Jacob完成签到,获得积分10
25秒前
聪明的宛菡完成签到,获得积分10
27秒前
殷勤的涵梅完成签到 ,获得积分10
29秒前
32秒前
34秒前
35秒前
老迟的新瑶完成签到 ,获得积分10
38秒前
wwrjj发布了新的文献求助10
38秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212499
求助须知:如何正确求助?哪些是违规求助? 4388659
关于积分的说明 13664251
捐赠科研通 4249165
什么是DOI,文献DOI怎么找? 2331448
邀请新用户注册赠送积分活动 1329148
关于科研通互助平台的介绍 1282561