清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

BrainSegFounder: Towards 3D foundation models for neuroimage segmentation

计算机科学 分割 人工智能 神经影像学 医学影像学 机器学习 深度学习 模式识别(心理学) 心理学 精神科
作者
J. Charles Cox,Peng Liu,Skylar E. Stolte,Yunchao Yang,Kang Liu,Kyle B. See,Huiwen Ju,Ruogu Fang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103301-103301 被引量:8
标识
DOI:10.1016/j.media.2024.103301
摘要

The burgeoning field of brain health research increasingly leverages artificial intelligence (AI) to analyze and interpret neuroimaging data. Medical foundation models have shown promise of superior performance with better sample efficiency. This work introduces a novel approach towards creating 3-dimensional (3D) medical foundation models for multimodal neuroimage segmentation through self-supervised training. Our approach involves a novel two-stage pretraining approach using vision transformers. The first stage encodes anatomical structures in generally healthy brains from the large-scale unlabeled neuroimage dataset of multimodal brain magnetic resonance imaging (MRI) images from 41,400 participants. This stage of pertaining focuses on identifying key features such as shapes and sizes of different brain structures. The second pretraining stage identifies disease-specific attributes, such as geometric shapes of tumors and lesions and spatial placements within the brain. This dual-phase methodology significantly reduces the extensive data requirements usually necessary for AI model training in neuroimage segmentation with the flexibility to adapt to various imaging modalities. We rigorously evaluate our model, BrainSegFounder, using the Brain Tumor Segmentation (BraTS) challenge and Anatomical Tracings of Lesions After Stroke v2.0 (ATLAS v2.0) datasets. BrainSegFounder demonstrates a significant performance gain, surpassing the achievements of the previous winning solutions using fully supervised learning. Our findings underscore the impact of scaling up both the model complexity and the volume of unlabeled training data derived from generally healthy brains. Both of these factors enhance the accuracy and predictive capabilities of the model in neuroimage segmentation tasks. Our pretrained models and code are at https://github.com/lab-smile/BrainSegFounder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉沉完成签到 ,获得积分0
1秒前
番茄酱完成签到 ,获得积分10
13秒前
mengmenglv完成签到 ,获得积分0
13秒前
Juvianne发布了新的文献求助30
33秒前
花花完成签到 ,获得积分10
34秒前
王饱饱完成签到 ,获得积分10
35秒前
夜话风陵杜完成签到 ,获得积分0
35秒前
43秒前
海阔天空完成签到 ,获得积分10
45秒前
量子星尘发布了新的文献求助10
46秒前
Rebeccaiscute完成签到 ,获得积分10
51秒前
Xzx1995完成签到 ,获得积分10
57秒前
外向的妍完成签到,获得积分10
59秒前
YifanWang应助科研通管家采纳,获得30
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
punyunyung发布了新的文献求助10
1分钟前
1分钟前
jiyuan完成签到,获得积分10
1分钟前
Joy发布了新的文献求助10
1分钟前
佳期如梦完成签到 ,获得积分10
1分钟前
先锋老刘001完成签到,获得积分10
1分钟前
潇洒的语蝶完成签到 ,获得积分10
1分钟前
keke发布了新的文献求助10
1分钟前
1分钟前
胖小羊完成签到 ,获得积分10
1分钟前
数乱了梨花完成签到 ,获得积分0
1分钟前
毛毛弟完成签到 ,获得积分10
1分钟前
文艺水风完成签到 ,获得积分10
1分钟前
1分钟前
andre20完成签到 ,获得积分10
1分钟前
萝卜Eating发布了新的文献求助30
1分钟前
神经蛙完成签到 ,获得积分10
2分钟前
punyunyung完成签到,获得积分10
2分钟前
spc68应助黎明先生采纳,获得10
2分钟前
AM发布了新的文献求助10
2分钟前
2分钟前
淡如菊发布了新的文献求助10
2分钟前
Akim应助AM采纳,获得10
2分钟前
丢星完成签到 ,获得积分10
2分钟前
helen李完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612035
求助须知:如何正确求助?哪些是违规求助? 4696186
关于积分的说明 14890583
捐赠科研通 4731071
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473310