BrainSegFounder: Towards 3D foundation models for neuroimage segmentation

计算机科学 分割 人工智能 神经影像学 医学影像学 机器学习 深度学习 模式识别(心理学) 心理学 精神科
作者
J. Charles Cox,Peng Liu,Skylar E. Stolte,Yunchao Yang,Kang Liu,Kyle B. See,Huiwen Ju,Ruogu Fang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103301-103301 被引量:7
标识
DOI:10.1016/j.media.2024.103301
摘要

The burgeoning field of brain health research increasingly leverages artificial intelligence (AI) to analyze and interpret neuroimaging data. Medical foundation models have shown promise of superior performance with better sample efficiency. This work introduces a novel approach towards creating 3-dimensional (3D) medical foundation models for multimodal neuroimage segmentation through self-supervised training. Our approach involves a novel two-stage pretraining approach using vision transformers. The first stage encodes anatomical structures in generally healthy brains from the large-scale unlabeled neuroimage dataset of multimodal brain magnetic resonance imaging (MRI) images from 41,400 participants. This stage of pertaining focuses on identifying key features such as shapes and sizes of different brain structures. The second pretraining stage identifies disease-specific attributes, such as geometric shapes of tumors and lesions and spatial placements within the brain. This dual-phase methodology significantly reduces the extensive data requirements usually necessary for AI model training in neuroimage segmentation with the flexibility to adapt to various imaging modalities. We rigorously evaluate our model, BrainSegFounder, using the Brain Tumor Segmentation (BraTS) challenge and Anatomical Tracings of Lesions After Stroke v2.0 (ATLAS v2.0) datasets. BrainSegFounder demonstrates a significant performance gain, surpassing the achievements of the previous winning solutions using fully supervised learning. Our findings underscore the impact of scaling up both the model complexity and the volume of unlabeled training data derived from generally healthy brains. Both of these factors enhance the accuracy and predictive capabilities of the model in neuroimage segmentation tasks. Our pretrained models and code are at https://github.com/lab-smile/BrainSegFounder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧拉完成签到,获得积分10
刚刚
Akim应助wdh采纳,获得10
刚刚
1秒前
雾雨礁完成签到,获得积分10
2秒前
3秒前
Lemon完成签到,获得积分10
3秒前
4秒前
4秒前
王子安完成签到,获得积分10
5秒前
5秒前
爆米花应助科研饼采纳,获得10
5秒前
kkkk完成签到,获得积分10
5秒前
俊逸柏柳完成签到 ,获得积分10
6秒前
无花果应助鲁鲁采纳,获得10
6秒前
李三阳发布了新的文献求助10
6秒前
7秒前
9秒前
10秒前
shihangZhang发布了新的文献求助10
10秒前
10秒前
彭于晏应助冷酷灵枫采纳,获得10
11秒前
益生益生完成签到 ,获得积分10
11秒前
Lawrence完成签到,获得积分10
11秒前
yyyyy发布了新的文献求助10
12秒前
JamesPei应助cm515531采纳,获得10
13秒前
精明松思给精明松思的求助进行了留言
13秒前
14秒前
14秒前
15秒前
111发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
dongdong发布了新的文献求助10
16秒前
16秒前
科研通AI5应助178181采纳,获得10
16秒前
qwert完成签到,获得积分20
16秒前
cm515531完成签到,获得积分10
16秒前
17秒前
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979289
求助须知:如何正确求助?哪些是违规求助? 3523220
关于积分的说明 11216715
捐赠科研通 3260668
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807111