BrainSegFounder: Towards 3D foundation models for neuroimage segmentation

计算机科学 分割 人工智能 神经影像学 医学影像学 机器学习 深度学习 模式识别(心理学) 心理学 精神科
作者
J. Charles Cox,Peng Liu,Skylar E. Stolte,Yunchao Yang,Liju Kang,Kyle B. See,Huiwen Ju,Ruogu Fang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103301-103301
标识
DOI:10.1016/j.media.2024.103301
摘要

The burgeoning field of brain health research increasingly leverages artificial intelligence (AI) to analyze and interpret neuroimaging data. Medical foundation models have shown promise of superior performance with better sample efficiency. This work introduces a novel approach towards creating 3-dimensional (3D) medical foundation models for multimodal neuroimage segmentation through self-supervised training. Our approach involves a novel two-stage pretraining approach using vision transformers. The first stage encodes anatomical structures in generally healthy brains from the large-scale unlabeled neuroimage dataset of multimodal brain magnetic resonance imaging (MRI) images from 41,400 participants. This stage of pertaining focuses on identifying key features such as shapes and sizes of different brain structures. The second pretraining stage identifies disease-specific attributes, such as geometric shapes of tumors and lesions and spatial placements within the brain. This dual-phase methodology significantly reduces the extensive data requirements usually necessary for AI model training in neuroimage segmentation with the flexibility to adapt to various imaging modalities. We rigorously evaluate our model, BrainSegFounder, using the Brain Tumor Segmentation (BraTS) challenge and Anatomical Tracings of Lesions After Stroke v2.0 (ATLAS v2.0) datasets. BrainSegFounder demonstrates a significant performance gain, surpassing the achievements of the previous winning solutions using fully supervised learning. Our findings underscore the impact of scaling up both the model complexity and the volume of unlabeled training data derived from generally healthy brains. Both of these factors enhance the accuracy and predictive capabilities of the model in neuroimage segmentation tasks. Our pretrained models and code are at https://github.com/lab-smile/BrainSegFounder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxyyyyyddd完成签到,获得积分10
刚刚
asd关闭了asd文献求助
2秒前
3秒前
Jasper应助高希希采纳,获得10
3秒前
ysssbq完成签到,获得积分10
4秒前
6秒前
GH完成签到,获得积分20
8秒前
study完成签到,获得积分20
8秒前
wangya完成签到,获得积分20
9秒前
9秒前
10秒前
10秒前
掌灯师发布了新的文献求助10
11秒前
英姑应助耳与总采纳,获得10
12秒前
wang122完成签到,获得积分10
14秒前
GH发布了新的文献求助10
14秒前
华仔应助lk采纳,获得10
14秒前
12544593556发布了新的文献求助10
14秒前
冷静小鸭子完成签到,获得积分10
18秒前
19秒前
yufanhui应助wangya采纳,获得10
19秒前
20秒前
weiwei完成签到 ,获得积分10
22秒前
23秒前
高希希发布了新的文献求助10
26秒前
27秒前
rong完成签到,获得积分10
31秒前
落寞蓝天发布了新的文献求助10
32秒前
34秒前
ccccc完成签到 ,获得积分10
37秒前
刘佳婷发布了新的文献求助10
38秒前
39秒前
hangzhen发布了新的文献求助10
39秒前
shain发布了新的文献求助10
40秒前
41秒前
Titter完成签到,获得积分10
44秒前
44秒前
45秒前
糖糖发布了新的文献求助10
46秒前
孙成成完成签到 ,获得积分10
46秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161114
求助须知:如何正确求助?哪些是违规求助? 2812494
关于积分的说明 7895538
捐赠科研通 2471395
什么是DOI,文献DOI怎么找? 1315941
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602103