Association of baseline remnant cholesterol independent of LDL-cholesterol with newly diagnosed diabetes in the Chinese population

糖尿病 内科学 胆固醇 基线(sea) 低密度脂蛋白胆固醇 医学 总胆固醇 人口 中国人口 联想(心理学) 内分泌学 生物 基因型 环境卫生 遗传学 心理学 基因 渔业 心理治疗师
作者
Yulu Yang,Xuehan Li,Jianwu Huang,Jiacheng Wu,Yalei Wang,Hao Chen,Zhihua Qiu,Zihua Zhou
标识
DOI:10.17305/bb.2024.11167
摘要

Remnant cholesterol (RC) is highly regarded in the cardiovascular field; however, its relationship with new-onset diabetes remains unclear. This study aimed to investigate the relationship between RC and the risk of developing diabetes, as well as its interaction with low-density lipoprotein cholesterol (LDL-c). This was a secondary analysis of a retrospective cohort study based on a Chinese population. A multivariate Cox proportional hazards regression was initially employed to assess the relationship between RC and newly diagnosed diabetes. This was followed by a subgroup analysis to explore intergroup heterogeneity. A clinical prediction model was then developed. Finally, the study further analyzed the interactions between LDL-c and RC. After adjusting for confounding factors, RC was significantly associated with an increased risk of diabetes (HR = 1.46, 95% confidence interval [CI] 1.36–1.57). Furthermore, this relationship was nonlinear, with an inflection point of 0.48 identified through the piecewise model. Subgroup analysis indicated that the association was more pronounced in individuals under 60 years and those with a body mass index < 24 kg/m2 (P for interaction = 0.0004, <0.0001, respectively). RC proved to be a more effective predictor of diabetes compared to other lipid profiles, and the clinical prediction model was successfully constructed. Notably, individuals in the low LDL-c/high RC group were found to have a 1.41-fold (95% CI 1.281.55) greater risk compared to those in the low LDL-c/low RC group. Significant correlations were observed between baseline RC levels and the risk of new-onset diabetes. Elevated RC was a strong predictor of diabetes risk, irrespective of LDL-c levels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过时的汲完成签到 ,获得积分10
刚刚
欣慰人生发布了新的文献求助10
刚刚
Shu舒完成签到,获得积分10
3秒前
asenda完成签到,获得积分10
3秒前
4秒前
内向晓旋完成签到,获得积分10
5秒前
问题多多完成签到,获得积分10
5秒前
SucceedIn完成签到,获得积分10
6秒前
Suge6发布了新的文献求助10
7秒前
春意盎然完成签到,获得积分10
8秒前
小绵羊完成签到,获得积分20
8秒前
9秒前
李爱国应助欣慰人生采纳,获得10
9秒前
量子星尘发布了新的文献求助10
11秒前
黎黎原上草完成签到,获得积分10
12秒前
香蕉觅云应助许xxxx采纳,获得10
12秒前
晨曦发布了新的文献求助10
15秒前
北秋生完成签到,获得积分10
15秒前
16秒前
16秒前
浮游应助疯狂的大闸蟹采纳,获得10
18秒前
果粒橙完成签到 ,获得积分10
18秒前
英勇的红酒完成签到 ,获得积分10
19秒前
伍六七完成签到,获得积分10
19秒前
小石头完成签到,获得积分10
19秒前
19秒前
20秒前
科研通AI2S应助tu111采纳,获得10
20秒前
小琼子完成签到,获得积分10
21秒前
Betaremains完成签到,获得积分10
23秒前
时尚雨兰完成签到,获得积分10
23秒前
QAQSS完成签到 ,获得积分10
23秒前
24秒前
zzl7337完成签到,获得积分10
24秒前
qianyixingchen完成签到 ,获得积分10
25秒前
小曹医生完成签到 ,获得积分10
26秒前
晨妍完成签到,获得积分20
27秒前
MRshenyy完成签到,获得积分10
27秒前
遇见飞儿完成签到,获得积分10
28秒前
29秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450513
求助须知:如何正确求助?哪些是违规求助? 4558271
关于积分的说明 14265898
捐赠科研通 4481797
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421891