Marangoni Droplets of Dextran in PEG Solution and Its Motile Change Due to Coil–Globule Transition of Coexisting DNA

马朗戈尼效应 右旋糖酐 材料科学 乙二醇 化学物理 对流 相(物质) 生物物理学 相变 化学工程 色谱法 化学 机械 热力学 有机化学 物理 工程类 生物
作者
Tomohiro Furuki,Hiroki Sakuta,Naoya Yanagisawa,Shingo Tabuchi,A. Kamo,Daisuke S. Shimamoto,Miho Yanagisawa
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (32): 43016-43025 被引量:2
标识
DOI:10.1021/acsami.4c09362
摘要

Motile droplets using Marangoni convection are attracting attention for their potential as cell-mimicking small robots. However, the motion of droplets relative to the internal and external environments that generate Marangoni convection has not been quantitatively described. In this study, we used an aqueous two-phase system [poly(ethylene glycol) (PEG) and dextran] in an elongated chamber to generate motile dextran droplets in a constant PEG concentration gradient. We demonstrated that dextran droplets move by Marangoni convection, resulting from the PEG concentration gradient and the active transport of PEG and dextran into and out of the motile dextran droplet. Furthermore, by spontaneously incorporating long DNA into the dextran droplets, we achieved cell-like motility changes controlled by coexisting environment-sensing molecules. The DNA changes its position within the droplet and motile speed in response to external conditions. In the presence of Mg2+, the coil–globule transition of DNA inside the droplet accelerates the motile speed due to the decrease in the droplet's dynamic viscosity. Globule DNA condenses at the rear part of the droplet along the convection, while coil DNA moves away from the droplet's central axis, separating the dipole convections. These results provide a blueprint for designing autonomous small robots using phase-separated droplets, which change the mobility and molecular distribution within the droplet in reaction with the environment. It will also open unexplored areas of self-assembly mechanisms through phase separation under convections, such as intracellular phase separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大西瓜发布了新的文献求助30
2秒前
2秒前
深情安青应助夏侯德东采纳,获得10
2秒前
毅青6796完成签到,获得积分10
3秒前
迟大猫应助科研通管家采纳,获得10
3秒前
苍露完成签到 ,获得积分10
3秒前
迟大猫应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
小飞七应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
迟大猫应助科研通管家采纳,获得10
4秒前
4秒前
归尘发布了新的文献求助10
5秒前
wpie99完成签到,获得积分10
5秒前
小何完成签到,获得积分10
6秒前
蜜桃奇迹关注了科研通微信公众号
6秒前
迟大猫应助shihui采纳,获得10
6秒前
9秒前
10秒前
顾志成发布了新的文献求助80
11秒前
11秒前
JamesPei应助夏秋双采纳,获得10
13秒前
英姑应助yzqsuper采纳,获得10
14秒前
小白菜发布了新的文献求助10
14秒前
14秒前
晨晨CC发布了新的文献求助20
15秒前
wheattt完成签到,获得积分10
15秒前
16秒前
bkagyin应助秋以南采纳,获得10
16秒前
16秒前
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543718
求助须知:如何正确求助?哪些是违规求助? 3121033
关于积分的说明 9345352
捐赠科研通 2819128
什么是DOI,文献DOI怎么找? 1549968
邀请新用户注册赠送积分活动 722341
科研通“疑难数据库(出版商)”最低求助积分说明 713153