EEG-VTTCNet: A loss joint training model based on the vision transformer and the temporal convolution network for EEG-based motor imagery classification

脑电图 运动表象 人工智能 卷积(计算机科学) 计算机科学 心理学 语音识别 模式识别(心理学) 神经科学 人工神经网络 脑-机接口
作者
Xingbin Shi,Baojiang Li,Wenlong Wang,Yuxin Qin,Haiyan Wang,Xichao Wang
出处
期刊:Neuroscience [Elsevier]
卷期号:556: 42-51 被引量:1
标识
DOI:10.1016/j.neuroscience.2024.07.051
摘要

Brain-computer interface (BCI) is a technology that directly connects signals between the human brain and a computer or other external device. Motor imagery electroencephalographic (MI-EEG) signals are considered a promising paradigm for BCI systems, with a wide range of potential applications in medical rehabilitation, human-computer interaction, and virtual reality. Accurate decoding of MI-EEG signals poses a significant challenge due to issues related to the quality of the collected EEG data and subject variability. Therefore, developing an efficient MI-EEG decoding network is crucial and warrants research. This paper proposes a loss joint training model based on the vision transformer (VIT) and the temporal convolutional network (EEG-VTTCNet) to classify MI-EEG signals. To take advantage of multiple modules together, the EEG-VTTCNet adopts a shared convolution strategy and a dual-branching strategy. The dual-branching modules perform complementary learning and jointly train shared convolutional modules with better performance. We conducted experiments on the BCI Competition IV-2a and IV-2b datasets, and the proposed network outperformed the current state-of-the-art techniques with an accuracy of 84.58% and 90.94%, respectively, for the subject-dependent mode. In addition, we used t-SNE to visualize the features extracted by the proposed network, further demonstrating the effectiveness of the feature extraction framework. We also conducted extensive ablation and hyperparameter tuning experiments to construct a robust network architecture that can be well generalized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助羊小羊采纳,获得10
刚刚
冷傲的采枫完成签到 ,获得积分10
5秒前
6秒前
6秒前
wall2win完成签到,获得积分10
6秒前
6秒前
6秒前
huahua完成签到 ,获得积分10
6秒前
7秒前
蓝蓝天空完成签到,获得积分10
9秒前
坦率的跳跳糖完成签到 ,获得积分10
10秒前
yq完成签到,获得积分10
11秒前
兴奋大船发布了新的文献求助10
11秒前
典雅棒棒糖完成签到 ,获得积分10
11秒前
66发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
Lucas应助直率的勒采纳,获得10
14秒前
今天摸鱼了嘛完成签到,获得积分10
14秒前
心台应助时尚的飞机采纳,获得10
15秒前
16秒前
orixero应助anan采纳,获得10
16秒前
爆米花应助拓跋涵易采纳,获得10
16秒前
汎影发布了新的文献求助10
18秒前
慕青应助qqqq采纳,获得10
18秒前
19秒前
19秒前
19秒前
20秒前
tulips发布了新的文献求助10
20秒前
wyp大魔王完成签到,获得积分20
20秒前
科研通AI2S应助现实的从蓉采纳,获得10
21秒前
李健应助damoq采纳,获得30
21秒前
偏偏海完成签到,获得积分10
22秒前
ly完成签到,获得积分10
22秒前
蓝莓味汁发布了新的文献求助10
23秒前
木棉的棉发布了新的文献求助10
23秒前
HCLonely应助於依白采纳,获得10
25秒前
羊小羊发布了新的文献求助10
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228354
求助须知:如何正确求助?哪些是违规求助? 2876112
关于积分的说明 8193906
捐赠科研通 2543258
什么是DOI,文献DOI怎么找? 1373602
科研通“疑难数据库(出版商)”最低求助积分说明 646814
邀请新用户注册赠送积分活动 621333