EEG-VTTCNet: A loss joint training model based on the vision transformer and the temporal convolution network for EEG-based motor imagery classification

脑电图 运动表象 人工智能 卷积(计算机科学) 计算机科学 心理学 语音识别 模式识别(心理学) 神经科学 人工神经网络 脑-机接口
作者
Xingbin Shi,Baojiang Li,Wenlong Wang,Yuxin Qin,Haiyan Wang,Xichao Wang
出处
期刊:Neuroscience [Elsevier BV]
卷期号:556: 42-51 被引量:1
标识
DOI:10.1016/j.neuroscience.2024.07.051
摘要

Brain-computer interface (BCI) is a technology that directly connects signals between the human brain and a computer or other external device. Motor imagery electroencephalographic (MI-EEG) signals are considered a promising paradigm for BCI systems, with a wide range of potential applications in medical rehabilitation, human-computer interaction, and virtual reality. Accurate decoding of MI-EEG signals poses a significant challenge due to issues related to the quality of the collected EEG data and subject variability. Therefore, developing an efficient MI-EEG decoding network is crucial and warrants research. This paper proposes a loss joint training model based on the vision transformer (VIT) and the temporal convolutional network (EEG-VTTCNet) to classify MI-EEG signals. To take advantage of multiple modules together, the EEG-VTTCNet adopts a shared convolution strategy and a dual-branching strategy. The dual-branching modules perform complementary learning and jointly train shared convolutional modules with better performance. We conducted experiments on the BCI Competition IV-2a and IV-2b datasets, and the proposed network outperformed the current state-of-the-art techniques with an accuracy of 84.58% and 90.94%, respectively, for the subject-dependent mode. In addition, we used t-SNE to visualize the features extracted by the proposed network, further demonstrating the effectiveness of the feature extraction framework. We also conducted extensive ablation and hyperparameter tuning experiments to construct a robust network architecture that can be well generalized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助冷酷稀采纳,获得10
刚刚
刚刚
刚刚
1秒前
勤奋花瓣完成签到,获得积分10
1秒前
田様应助研友_ZGD9o8采纳,获得10
1秒前
rd完成签到 ,获得积分10
1秒前
1秒前
CipherSage应助科研钉采纳,获得10
1秒前
gyhmm完成签到,获得积分10
2秒前
心脏沾鲜血完成签到,获得积分20
2秒前
打打应助春江采纳,获得10
2秒前
独特霸发布了新的文献求助10
2秒前
Pyc完成签到 ,获得积分10
4秒前
ding应助今天也要努力呀采纳,获得10
4秒前
qsw发布了新的文献求助20
4秒前
4秒前
lele发布了新的文献求助50
5秒前
他们叫我张国荣完成签到,获得积分10
6秒前
星点点发布了新的文献求助10
6秒前
6秒前
义气的紫菜完成签到,获得积分10
6秒前
耀眼的紫丝关注了科研通微信公众号
7秒前
8秒前
开心完成签到,获得积分10
8秒前
ning发布了新的文献求助10
8秒前
爆米花应助jliu采纳,获得10
8秒前
ccc完成签到,获得积分10
8秒前
8秒前
稻草完成签到,获得积分10
9秒前
超帅诗槐发布了新的文献求助10
9秒前
vic303发布了新的文献求助10
9秒前
viycole完成签到,获得积分10
9秒前
9秒前
鹿友绿完成签到,获得积分10
10秒前
10秒前
等待的花生完成签到,获得积分10
10秒前
Huibo完成签到,获得积分10
11秒前
11秒前
leehoo完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009871
求助须知:如何正确求助?哪些是违规求助? 3549812
关于积分的说明 11303839
捐赠科研通 3284342
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886393
科研通“疑难数据库(出版商)”最低求助积分说明 811406