Multifunctional Nano‐Conductive Hydrogels With High Mechanical Strength, Toughness and Fatigue Resistance as Self‐Powered Wearable Sensors and Deep Learning‐Assisted Recognition System

材料科学 自愈水凝胶 韧性 可穿戴计算机 纳米- 导电体 可穿戴技术 纳米技术 复合材料 计算机科学 嵌入式系统 高分子化学
作者
Sheng Wang,Picheng Chen,Yu Ding,Penghao Zhu,Yuetao Liu,Chuanxing Wang,Chuanhui Gao
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202409081
摘要

Abstract High mechanical strength, toughness, and fatigue resistance are essential to improve the reliability of conductive hydrogels for self‐powered sensing. However, achieving mutually exclusive properties simultaneously remains challenging. Hence, a novel directed interlocking strategy based on topological network structure and mechanical training is proposed to construct tough hydrogels by optimizing the network structure and modulating the orientation of molecular chains. Combining Zn 2+ crosslinked cellulose nanofibers (CNFs) and a polyacrylamide‐poly(vinyl alcohol) double‐network, the unique interlocked‐network structure exhibits an enhanced toughening effect due to hydrogen bonding and metal‐ligand interactions. The aligned nanocrystalline domains achieved by training further contribute to an increase in the toughness and fatigue thresholds. This innovative approach synergistically enhances the mechanical properties of the nano‐conductive hydrogel, achieving a maximum tensile strength of 4.98 MPa and a toughness of 48 MJ m −3 . Notably, the CNFs template with anchored polyaniline, when oriented through mechanical training, forms a unique directional conductive pathway, which significantly enhances the power output performance. Besides, a motion recognition system based on a self‐powered sensing device is designed with the assistance of deep learning techniques to accurately identify human motion behaviors. This work showcases a potentially transformative flexible electronic material for self‐powered sensing systems and intelligent recognition systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nanbaobao发布了新的文献求助10
刚刚
大佬们请帮助我完成签到,获得积分10
刚刚
jin完成签到 ,获得积分10
1秒前
整齐行云完成签到,获得积分10
1秒前
在水一方应助DIY101采纳,获得10
1秒前
酷波er应助Dandan采纳,获得10
2秒前
sunny完成签到,获得积分10
2秒前
华仔应助任性采纳,获得10
2秒前
ls完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
xxxx关注了科研通微信公众号
3秒前
hui发布了新的文献求助10
3秒前
房LY完成签到,获得积分10
3秒前
隐形曼青应助夏林采纳,获得10
3秒前
Dobrzs完成签到,获得积分10
3秒前
果粒橙完成签到 ,获得积分10
5秒前
半信美玉完成签到,获得积分10
5秒前
勤劳滑板完成签到,获得积分10
6秒前
6秒前
ma完成签到,获得积分10
6秒前
张张发布了新的文献求助10
7秒前
温开水完成签到 ,获得积分10
7秒前
hua完成签到,获得积分10
7秒前
7秒前
张同学要谦虚完成签到,获得积分10
8秒前
发呆的猫发布了新的文献求助10
8秒前
HEROTREE完成签到 ,获得积分10
9秒前
9秒前
乐观的小熊猫完成签到,获得积分10
9秒前
10秒前
10秒前
温酒筚篥完成签到,获得积分10
10秒前
12秒前
酷波er应助jagger采纳,获得10
14秒前
14秒前
14秒前
研友_VZG7GZ应助陶醉铁身采纳,获得10
15秒前
SciGPT应助Leo000007采纳,获得10
15秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Evolution 1500
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 550
Sport, Music, Identities 500
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2986949
求助须知:如何正确求助?哪些是违规求助? 2647826
关于积分的说明 7153129
捐赠科研通 2281735
什么是DOI,文献DOI怎么找? 1210092
版权声明 592408
科研通“疑难数据库(出版商)”最低求助积分说明 590961