已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Visual route following for tiny autonomous robots

机器人 计算机科学 人机交互 人工智能 计算机视觉 沟通 心理学
作者
Tom van Dijk,Christophe De Wagter,Guido C. H. E. de Croon
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:9 (92)
标识
DOI:10.1126/scirobotics.adk0310
摘要

Navigation is an essential capability for autonomous robots. In particular, visual navigation has been a major research topic in robotics because cameras are lightweight, power-efficient sensors that provide rich information on the environment. However, the main challenge of visual navigation is that it requires substantial computational power and memory for visual processing and storage of the results. As of yet, this has precluded its use on small, extremely resource-constrained robots such as lightweight drones. Inspired by the parsimony of natural intelligence, we propose an insect-inspired approach toward visual navigation that is specifically aimed at extremely resource-restricted robots. It is a route-following approach in which a robot's outbound trajectory is stored as a collection of highly compressed panoramic images together with their spatial relationships as measured with odometry. During the inbound journey, the robot uses a combination of odometry and visual homing to return to the stored locations, with visual homing preventing the buildup of odometric drift. A main advancement of the proposed strategy is that the number of stored compressed images is minimized by spacing them apart as far as the accuracy of odometry allows. To demonstrate the suitability for small systems, we implemented the strategy on a tiny 56-gram drone. The drone could successfully follow routes up to 100 meters with a trajectory representation that consumed less than 20 bytes per meter. The presented method forms a substantial step toward the autonomous visual navigation of tiny robots, facilitating their more widespread application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助qwerty123采纳,获得10
2秒前
疯狂喵完成签到 ,获得积分10
6秒前
Yaze完成签到 ,获得积分10
7秒前
薛建伟完成签到 ,获得积分10
9秒前
斯皮克完成签到,获得积分10
12秒前
陈尹蓝完成签到 ,获得积分10
13秒前
忧虑的羊完成签到,获得积分10
14秒前
Cloud应助摸鱼大天才采纳,获得30
16秒前
20秒前
21秒前
今后应助张张采纳,获得10
22秒前
neu_zxy1991发布了新的文献求助10
24秒前
26秒前
30秒前
健忘幻儿完成签到 ,获得积分10
30秒前
完美世界应助肖小小采纳,获得10
32秒前
如若初心发布了新的文献求助10
35秒前
kkkkkk发布了新的文献求助10
35秒前
冷艳的一区完成签到 ,获得积分10
35秒前
Owen应助大喵采纳,获得10
36秒前
郭郭要努力ya完成签到 ,获得积分10
37秒前
画船听雨眠完成签到 ,获得积分10
38秒前
哇呀呀完成签到 ,获得积分10
39秒前
XCHI完成签到 ,获得积分10
40秒前
41秒前
DrLee完成签到,获得积分10
45秒前
xioayu完成签到 ,获得积分10
45秒前
49秒前
guzhiwen发布了新的文献求助20
53秒前
53秒前
AWEI完成签到,获得积分10
53秒前
Rencc完成签到,获得积分20
55秒前
55秒前
56秒前
大喵发布了新的文献求助10
58秒前
小门完成签到 ,获得积分10
59秒前
onestepcloser完成签到 ,获得积分10
59秒前
cytb6f发布了新的文献求助10
1分钟前
uouuo完成签到 ,获得积分10
1分钟前
Ava应助大喵采纳,获得10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133873
求助须知:如何正确求助?哪些是违规求助? 2784787
关于积分的说明 7768500
捐赠科研通 2440159
什么是DOI,文献DOI怎么找? 1297188
科研通“疑难数据库(出版商)”最低求助积分说明 624901
版权声明 600791