特征选择
支持向量机
偏最小二乘回归
数学
模式识别(心理学)
生物系统
计算机科学
人工智能
统计
生物
作者
Yongqin Zhao,Chengyun Zhu,Hui Jiang
标识
DOI:10.1016/j.infrared.2023.105004
摘要
Wheat is a globally cultivated cereal crop. However, it is susceptible to Fusarium head blight, which leads to the production of zearalenone (ZEN), significantly impacting the value of wheat. This paper proposed a novel technique for quantitatively detecting ZEN in wheat using near-infrared spectroscopy. The absorbance of wheat flour samples with varying degrees of mildew were collected using a spectral detection system based on the spectrometer. And this paper introduced two methods for feature intervals selection, interval combination optimization (ICO) and interval variable iterative space shrinkage approach (iVISSA), combined with partial least squares (PLS) and support vector machine (SVM) established a regression model based on feature intervals selection for quantitatively detecting ZEN in wheat, and then compared the performance of them. The research results showed that the SVM model outperformed the PLS model in terms of detection performance. Additionally, the SVM model detecting the level of ZEN in wheat based on the feature intervals selected by ICO achieved the best generalization performance, with a root mean square error of prediction (RMSEP) of 31.4148 μg·kg−1, a coefficient of determination of prediction (RP2) of 0.9434, and a relative percent deviation (RPD) of 4.2768. These results demonstrated that the SVM regression model, established by using ICO for selecting the near-infrared spectral intervals, can accurately detect ZEN in wheat. Near-infrared spectroscopy combined with appropriate data analysis methods, which can be used as a simple and fast tool for quantitative detection of mycotoxins of wheat and other grains.
科研通智能强力驱动
Strongly Powered by AbleSci AI