Discovery of depression-associated factors among childhood trauma victims from a large sample size: Using machine learning and network analysis

焦虑 心理干预 萧条(经济学) 临床心理学 心理学 逻辑回归 精神科 因果关系(物理学) 流行病学 医学 内科学 量子力学 物理 宏观经济学 经济
作者
Yu Jin,Shicun Xu,Zhixian Shao,Xianyu Luo,Yinzhe Wang,Yi Yu,Yuanyuan Wang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:345: 300-310 被引量:9
标识
DOI:10.1016/j.jad.2023.10.101
摘要

Experiences of childhood trauma (CT) would lead to serious mental problems, especially depression. Therefore, it becomes crucial to identify influential factors related to depression and explore their associations. The objectives were to 1) identify critical depression-related factors using the extreme gradient boosting (XGBoost) method from a large-scale survey data; 2) explore associations between these factors for targeted interventions and treatments.A large-scale epidemiological study covering 63 universities was conducted in Jilin Province, China. The XGBoost model was trained and tested to classify young adults with CT experiences who had or did not have depression (N = 27,671). The essential factors were selected by SHapley Additive exPlanations (SHAP) value. Multiple logistic regression analyses were conducted for validation. The associations between these depression-related factors were further explored using network analysis.The XGBoost model selected the top 10 features associated with depression with satisfactory performance (AUC = 0.91; sensitivity = 0.88 and specificity = 0.76). These factors significantly differed between depression and non-depression groups (p < 0.001). There are strong positive associations between anxiety and obsessive-compulsive disorder (OCD), anxiety and post-traumatic stress disorder (PTSD), social anxiety disorder (SAD) and appearance anxiety, and negative associations between sleep quality and anxiety, sleep quality and PTSD among CT participants with depression.The cross-sectional design cannot draw causality, and biases in self-report measurements cannot be ignored.XGBoost model and network analysis were useful methods for discovering and understanding depression-related factors in this epidemiological study. Moreover, these essential factors could offer insights into future interventions and treatments for depressed young adults with CT experiences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咕嘟完成签到,获得积分10
1秒前
1秒前
2秒前
哈哈发布了新的文献求助10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
wanci应助高高的坤采纳,获得10
4秒前
4秒前
4秒前
4秒前
HHHSean发布了新的文献求助10
4秒前
4秒前
涛哥发布了新的文献求助10
5秒前
熊金艳发布了新的文献求助10
5秒前
6秒前
cyz驳回了em0应助
6秒前
夜幕应助Li656943234采纳,获得20
7秒前
7秒前
7秒前
粱若之发布了新的文献求助10
7秒前
chen发布了新的文献求助20
7秒前
8秒前
科研通AI6应助学习采纳,获得10
8秒前
kaillera发布了新的文献求助10
8秒前
羊咩咩哒发布了新的文献求助10
8秒前
kk发布了新的文献求助10
8秒前
开逸一夏发布了新的文献求助10
9秒前
9秒前
天下第一帅完成签到,获得积分10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
momo发布了新的文献求助10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
蓝天应助科研通管家采纳,获得10
10秒前
10秒前
斯文败类应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575863
求助须知:如何正确求助?哪些是违规求助? 3995272
关于积分的说明 12368236
捐赠科研通 3669085
什么是DOI,文献DOI怎么找? 2022092
邀请新用户注册赠送积分活动 1056109
科研通“疑难数据库(出版商)”最低求助积分说明 943424