Discovery of depression-associated factors among childhood trauma victims from a large sample size: Using machine learning and network analysis

焦虑 心理干预 萧条(经济学) 临床心理学 心理学 逻辑回归 精神科 因果关系(物理学) 流行病学 医学 内科学 量子力学 物理 宏观经济学 经济
作者
Yu Jin,Shicun Xu,Zhixian Shao,Xianyu Luo,Yinzhe Wang,Yi Yu,Yuanyuan Wang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:345: 300-310 被引量:9
标识
DOI:10.1016/j.jad.2023.10.101
摘要

Experiences of childhood trauma (CT) would lead to serious mental problems, especially depression. Therefore, it becomes crucial to identify influential factors related to depression and explore their associations. The objectives were to 1) identify critical depression-related factors using the extreme gradient boosting (XGBoost) method from a large-scale survey data; 2) explore associations between these factors for targeted interventions and treatments.A large-scale epidemiological study covering 63 universities was conducted in Jilin Province, China. The XGBoost model was trained and tested to classify young adults with CT experiences who had or did not have depression (N = 27,671). The essential factors were selected by SHapley Additive exPlanations (SHAP) value. Multiple logistic regression analyses were conducted for validation. The associations between these depression-related factors were further explored using network analysis.The XGBoost model selected the top 10 features associated with depression with satisfactory performance (AUC = 0.91; sensitivity = 0.88 and specificity = 0.76). These factors significantly differed between depression and non-depression groups (p < 0.001). There are strong positive associations between anxiety and obsessive-compulsive disorder (OCD), anxiety and post-traumatic stress disorder (PTSD), social anxiety disorder (SAD) and appearance anxiety, and negative associations between sleep quality and anxiety, sleep quality and PTSD among CT participants with depression.The cross-sectional design cannot draw causality, and biases in self-report measurements cannot be ignored.XGBoost model and network analysis were useful methods for discovering and understanding depression-related factors in this epidemiological study. Moreover, these essential factors could offer insights into future interventions and treatments for depressed young adults with CT experiences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
晶格畸变完成签到,获得积分10
1秒前
mufcyang完成签到,获得积分10
1秒前
大林完成签到,获得积分10
1秒前
Muhi完成签到,获得积分10
1秒前
汉堡包应助YF采纳,获得10
2秒前
Survive完成签到,获得积分10
2秒前
情怀应助yy采纳,获得10
2秒前
贵贵完成签到,获得积分10
3秒前
CipherSage应助蔡6705采纳,获得10
3秒前
lhcshuang发布了新的文献求助10
4秒前
陈富贵完成签到 ,获得积分10
5秒前
TanXu完成签到 ,获得积分10
5秒前
南冥完成签到 ,获得积分10
6秒前
无私的芹应助狂野忆文采纳,获得10
6秒前
所所应助狂野忆文采纳,获得10
6秒前
研友_VZG7GZ应助狂野忆文采纳,获得10
6秒前
斯文败类应助狂野忆文采纳,获得10
6秒前
无花果应助狂野忆文采纳,获得10
6秒前
上官若男应助狂野忆文采纳,获得10
6秒前
赘婿应助狂野忆文采纳,获得10
6秒前
顾矜应助狂野忆文采纳,获得10
6秒前
情怀应助狂野忆文采纳,获得10
6秒前
7秒前
7秒前
光亮若翠完成签到,获得积分10
8秒前
Atopos完成签到,获得积分10
9秒前
CAOHOU应助小鱼女侠采纳,获得10
9秒前
平常星星完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
无花果应助流川枫采纳,获得10
11秒前
11秒前
巧克力手印完成签到,获得积分10
11秒前
单薄裘完成签到,获得积分10
11秒前
坚果发布了新的文献求助10
12秒前
12秒前
内向怀曼发布了新的文献求助10
12秒前
风中的丝袜完成签到,获得积分10
12秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027