Discovery of depression-associated factors among childhood trauma victims from a large sample size: Using machine learning and network analysis

焦虑 心理干预 萧条(经济学) 临床心理学 心理学 逻辑回归 精神科 因果关系(物理学) 流行病学 医学 内科学 量子力学 物理 宏观经济学 经济
作者
Yu Jin,Shicun Xu,Zhixian Shao,Xianyu Luo,Yinzhe Wang,Yi Yu,Yuanyuan Wang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:345: 300-310 被引量:7
标识
DOI:10.1016/j.jad.2023.10.101
摘要

Experiences of childhood trauma (CT) would lead to serious mental problems, especially depression. Therefore, it becomes crucial to identify influential factors related to depression and explore their associations. The objectives were to 1) identify critical depression-related factors using the extreme gradient boosting (XGBoost) method from a large-scale survey data; 2) explore associations between these factors for targeted interventions and treatments.A large-scale epidemiological study covering 63 universities was conducted in Jilin Province, China. The XGBoost model was trained and tested to classify young adults with CT experiences who had or did not have depression (N = 27,671). The essential factors were selected by SHapley Additive exPlanations (SHAP) value. Multiple logistic regression analyses were conducted for validation. The associations between these depression-related factors were further explored using network analysis.The XGBoost model selected the top 10 features associated with depression with satisfactory performance (AUC = 0.91; sensitivity = 0.88 and specificity = 0.76). These factors significantly differed between depression and non-depression groups (p < 0.001). There are strong positive associations between anxiety and obsessive-compulsive disorder (OCD), anxiety and post-traumatic stress disorder (PTSD), social anxiety disorder (SAD) and appearance anxiety, and negative associations between sleep quality and anxiety, sleep quality and PTSD among CT participants with depression.The cross-sectional design cannot draw causality, and biases in self-report measurements cannot be ignored.XGBoost model and network analysis were useful methods for discovering and understanding depression-related factors in this epidemiological study. Moreover, these essential factors could offer insights into future interventions and treatments for depressed young adults with CT experiences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戈惜完成签到 ,获得积分10
1秒前
encounter完成签到,获得积分10
1秒前
赤侯发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
贾断秋完成签到,获得积分10
5秒前
orixero应助11111111111111采纳,获得10
6秒前
晨雨初听发布了新的文献求助10
6秒前
Dr.Joseph发布了新的文献求助10
8秒前
HC3完成签到,获得积分10
8秒前
9秒前
9秒前
洛神完成签到,获得积分10
9秒前
cctv18应助子车安萱采纳,获得10
12秒前
HC3发布了新的文献求助10
12秒前
12秒前
12秒前
Hyphen完成签到,获得积分20
15秒前
天天快乐应助酷酷的一笑采纳,获得10
16秒前
缓慢剑通完成签到 ,获得积分10
17秒前
田様应助wh采纳,获得10
17秒前
Akim应助zuducyow采纳,获得10
18秒前
qdange发布了新的文献求助10
19秒前
19秒前
yyyn完成签到,获得积分10
19秒前
Russula_Chu应助songjin123采纳,获得20
20秒前
折耳根完成签到 ,获得积分10
20秒前
21秒前
21秒前
ARIA完成签到,获得积分10
21秒前
elf完成签到,获得积分10
21秒前
Moislad发布了新的文献求助10
21秒前
21秒前
22秒前
Dr.Joseph完成签到,获得积分10
22秒前
23秒前
24秒前
24秒前
快递乱跑完成签到 ,获得积分10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756576
求助须知:如何正确求助?哪些是违规求助? 3299902
关于积分的说明 10111985
捐赠科研通 3014429
什么是DOI,文献DOI怎么找? 1655544
邀请新用户注册赠送积分活动 789991
科研通“疑难数据库(出版商)”最低求助积分说明 753533