已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Discovery of depression-associated factors among childhood trauma victims from a large sample size: Using machine learning and network analysis

焦虑 心理干预 萧条(经济学) 临床心理学 心理学 逻辑回归 精神科 因果关系(物理学) 流行病学 医学 内科学 物理 量子力学 经济 宏观经济学
作者
Yu Jin,Shicun Xu,Zhixian Shao,Xianyu Luo,Yinzhe Wang,Yi Yu,Yuanyuan Wang
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:345: 300-310 被引量:5
标识
DOI:10.1016/j.jad.2023.10.101
摘要

Experiences of childhood trauma (CT) would lead to serious mental problems, especially depression. Therefore, it becomes crucial to identify influential factors related to depression and explore their associations. The objectives were to 1) identify critical depression-related factors using the extreme gradient boosting (XGBoost) method from a large-scale survey data; 2) explore associations between these factors for targeted interventions and treatments.A large-scale epidemiological study covering 63 universities was conducted in Jilin Province, China. The XGBoost model was trained and tested to classify young adults with CT experiences who had or did not have depression (N = 27,671). The essential factors were selected by SHapley Additive exPlanations (SHAP) value. Multiple logistic regression analyses were conducted for validation. The associations between these depression-related factors were further explored using network analysis.The XGBoost model selected the top 10 features associated with depression with satisfactory performance (AUC = 0.91; sensitivity = 0.88 and specificity = 0.76). These factors significantly differed between depression and non-depression groups (p < 0.001). There are strong positive associations between anxiety and obsessive-compulsive disorder (OCD), anxiety and post-traumatic stress disorder (PTSD), social anxiety disorder (SAD) and appearance anxiety, and negative associations between sleep quality and anxiety, sleep quality and PTSD among CT participants with depression.The cross-sectional design cannot draw causality, and biases in self-report measurements cannot be ignored.XGBoost model and network analysis were useful methods for discovering and understanding depression-related factors in this epidemiological study. Moreover, these essential factors could offer insights into future interventions and treatments for depressed young adults with CT experiences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壶壶壶完成签到 ,获得积分10
2秒前
2秒前
3秒前
kkkay完成签到,获得积分10
3秒前
Emma应助趣多多采纳,获得10
3秒前
科研通AI2S应助趣多多采纳,获得30
3秒前
4秒前
二十八化生完成签到 ,获得积分10
5秒前
yuaner发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
蜻蜓队长前来报道7完成签到,获得积分10
8秒前
小柒发布了新的文献求助10
9秒前
Blackmoon发布了新的文献求助30
10秒前
12秒前
应见惯发布了新的文献求助10
12秒前
宝儿姐完成签到,获得积分10
13秒前
mumu发布了新的文献求助10
15秒前
5866完成签到,获得积分10
15秒前
韶光与猫完成签到,获得积分10
17秒前
华仔应助yuaner采纳,获得10
18秒前
19秒前
19秒前
千寻完成签到,获得积分10
20秒前
桐桐应助dasdsa采纳,获得10
20秒前
CodeCraft应助薛定谔的猫采纳,获得10
21秒前
Sam发布了新的文献求助10
23秒前
鲤鱼冬灵完成签到,获得积分10
27秒前
27秒前
28秒前
28秒前
28秒前
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
打打应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
oceanao应助科研通管家采纳,获得10
29秒前
Hayat应助科研通管家采纳,获得20
29秒前
桐桐应助科研通管家采纳,获得10
29秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171230
求助须知:如何正确求助?哪些是违规求助? 2822135
关于积分的说明 7938200
捐赠科研通 2482633
什么是DOI,文献DOI怎么找? 1322678
科研通“疑难数据库(出版商)”最低求助积分说明 633676
版权声明 602627