Frequency-aware feature aggregation network with dual-task consistency for RGB-T salient object detection

人工智能 RGB颜色模型 计算机科学 特征(语言学) 模式识别(心理学) 突出 计算机视觉 语言学 哲学
作者
Heng Zhou,Chunna Tian,Zhenxi Zhang,Chengyang Li,Yongqiang Xie,Zhongbo Li
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:146: 110043-110043 被引量:8
标识
DOI:10.1016/j.patcog.2023.110043
摘要

RGB-Thermal salient object detection (SOD) aims to merge two spectral images to segment visually appealing objects. Current methods primarily extract salient object information in the pixel perspective. However, biological and psychological research indicates notable frequency sensitivity of the human visual system (HVS). The high-frequency (HF) and low-frequency (LF) information in images are processed by different neural channels, which has been overlooked in SOD. In this study, we argue that the objective of RGB-T SOD is not only to enhance feature representation in the pixel-aware but also to emulate human visual mechanisms. To our best knowledge, we explore RGB-T SOD from the frequency perspective for the first time. Specifically, we first present a frequency-aware multi-spectral feature aggregation module (FMFA) to exploit the separability and complementarity of frequency-aware features, generating and making full use of LF and HF cues. FMFA improves the feature representation of RGB-T from the frequency perspective and provides stronger frequency cues for boundary auxiliary tasks. Then, we develop an HF-guided signed distance map prediction module (HF-SDM) with dual-task consistency to effectively alleviate the coarse mask caused by blur boundary. HF-SDM employs the geometric relationship of objects which boosts the interaction between salient regions and boundaries. As a result, the model can gain sharper boundaries for salient objects. Finally, we propose a frequency-aware feature aggregation network (FFANet) incorporated with dual-task learning. Extensive experiments on RGB-T SOD datasets demonstrate that our proposed method outperforms other state-of-the-art methods. Ablation studies and visualizations further verify the effectiveness and interpretability of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助闪闪的绮波采纳,获得10
1秒前
444完成签到,获得积分20
1秒前
2秒前
情怀应助念心采纳,获得10
2秒前
3秒前
5秒前
pppsy完成签到,获得积分10
7秒前
简化为完成签到,获得积分10
8秒前
爱科研的罗罗完成签到,获得积分10
8秒前
Rondab应助mini采纳,获得10
8秒前
hhhhhhhh完成签到,获得积分20
8秒前
9秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
10秒前
hhhhhhhh发布了新的文献求助10
12秒前
12秒前
12秒前
逢场作戱__完成签到 ,获得积分10
13秒前
Bio应助科研通管家采纳,获得30
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
heyihao应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得30
13秒前
深情安青应助糕糕采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
Bio应助科研通管家采纳,获得30
14秒前
14秒前
科目三应助科研通管家采纳,获得10
14秒前
挖掘机应助科研通管家采纳,获得200
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
夕诙应助科研通管家采纳,获得20
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
Liufgui应助科研通管家采纳,获得30
15秒前
情怀应助科研通管家采纳,获得10
15秒前
15秒前
打打应助科研通管家采纳,获得10
15秒前
heyihao应助科研通管家采纳,获得30
15秒前
彭于彦祖应助科研通管家采纳,获得30
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070