已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Frequency-aware feature aggregation network with dual-task consistency for RGB-T salient object detection

人工智能 RGB颜色模型 计算机科学 特征(语言学) 模式识别(心理学) 突出 计算机视觉 语言学 哲学
作者
Heng Zhou,Chunna Tian,Zhenxi Zhang,Chengyang Li,Yongqiang Xie,Zhongbo Li
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:146: 110043-110043 被引量:22
标识
DOI:10.1016/j.patcog.2023.110043
摘要

RGB-Thermal salient object detection (SOD) aims to merge two spectral images to segment visually appealing objects. Current methods primarily extract salient object information in the pixel perspective. However, biological and psychological research indicates notable frequency sensitivity of the human visual system (HVS). The high-frequency (HF) and low-frequency (LF) information in images are processed by different neural channels, which has been overlooked in SOD. In this study, we argue that the objective of RGB-T SOD is not only to enhance feature representation in the pixel-aware but also to emulate human visual mechanisms. To our best knowledge, we explore RGB-T SOD from the frequency perspective for the first time. Specifically, we first present a frequency-aware multi-spectral feature aggregation module (FMFA) to exploit the separability and complementarity of frequency-aware features, generating and making full use of LF and HF cues. FMFA improves the feature representation of RGB-T from the frequency perspective and provides stronger frequency cues for boundary auxiliary tasks. Then, we develop an HF-guided signed distance map prediction module (HF-SDM) with dual-task consistency to effectively alleviate the coarse mask caused by blur boundary. HF-SDM employs the geometric relationship of objects which boosts the interaction between salient regions and boundaries. As a result, the model can gain sharper boundaries for salient objects. Finally, we propose a frequency-aware feature aggregation network (FFANet) incorporated with dual-task learning. Extensive experiments on RGB-T SOD datasets demonstrate that our proposed method outperforms other state-of-the-art methods. Ablation studies and visualizations further verify the effectiveness and interpretability of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
英俊的铭应助ceeray23采纳,获得20
4秒前
茉莉完成签到 ,获得积分10
5秒前
酷波er应助clove采纳,获得10
6秒前
信哥哥发布了新的文献求助10
6秒前
6秒前
橙橙橙橙发布了新的文献求助10
7秒前
10秒前
10秒前
Owen应助暮然采纳,获得10
11秒前
12秒前
科研小白发布了新的文献求助10
12秒前
13秒前
王仙人发布了新的文献求助10
14秒前
liu发布了新的文献求助10
15秒前
15秒前
zhang完成签到,获得积分10
16秒前
无花果应助科研小白采纳,获得10
16秒前
红豆盖饭发布了新的文献求助10
19秒前
19秒前
SCI完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
李健的小迷弟应助xkx采纳,获得10
22秒前
暮然发布了新的文献求助10
23秒前
贝尔发布了新的文献求助10
25秒前
橘猫ADD发布了新的文献求助10
25秒前
小马甲应助吕凯良采纳,获得10
25秒前
糖配坤完成签到 ,获得积分10
26秒前
呀呀呀完成签到,获得积分10
28秒前
28秒前
耶斯发布了新的文献求助10
28秒前
bruseli完成签到,获得积分20
28秒前
zshenyingt完成签到,获得积分10
33秒前
乐乐应助世隐采纳,获得30
34秒前
35秒前
35秒前
1111完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Atlas of the Rabbit Brain and Spinal Cord 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5018389
求助须知:如何正确求助?哪些是违规求助? 4257734
关于积分的说明 13269841
捐赠科研通 4062244
什么是DOI,文献DOI怎么找? 2221850
邀请新用户注册赠送积分活动 1231029
关于科研通互助平台的介绍 1153784