Frequency-aware feature aggregation network with dual-task consistency for RGB-T salient object detection

人工智能 RGB颜色模型 计算机科学 特征(语言学) 模式识别(心理学) 突出 计算机视觉 语言学 哲学
作者
Heng Zhou,Chunna Tian,Zhenxi Zhang,Chengyang Li,Yongqiang Xie,Zhongbo Li
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110043-110043 被引量:22
标识
DOI:10.1016/j.patcog.2023.110043
摘要

RGB-Thermal salient object detection (SOD) aims to merge two spectral images to segment visually appealing objects. Current methods primarily extract salient object information in the pixel perspective. However, biological and psychological research indicates notable frequency sensitivity of the human visual system (HVS). The high-frequency (HF) and low-frequency (LF) information in images are processed by different neural channels, which has been overlooked in SOD. In this study, we argue that the objective of RGB-T SOD is not only to enhance feature representation in the pixel-aware but also to emulate human visual mechanisms. To our best knowledge, we explore RGB-T SOD from the frequency perspective for the first time. Specifically, we first present a frequency-aware multi-spectral feature aggregation module (FMFA) to exploit the separability and complementarity of frequency-aware features, generating and making full use of LF and HF cues. FMFA improves the feature representation of RGB-T from the frequency perspective and provides stronger frequency cues for boundary auxiliary tasks. Then, we develop an HF-guided signed distance map prediction module (HF-SDM) with dual-task consistency to effectively alleviate the coarse mask caused by blur boundary. HF-SDM employs the geometric relationship of objects which boosts the interaction between salient regions and boundaries. As a result, the model can gain sharper boundaries for salient objects. Finally, we propose a frequency-aware feature aggregation network (FFANet) incorporated with dual-task learning. Extensive experiments on RGB-T SOD datasets demonstrate that our proposed method outperforms other state-of-the-art methods. Ablation studies and visualizations further verify the effectiveness and interpretability of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
CLX。完成签到,获得积分10
1秒前
2秒前
2秒前
求助人员发布了新的文献求助10
3秒前
5秒前
北鸢完成签到,获得积分10
5秒前
烂漫的凡波完成签到,获得积分10
5秒前
5秒前
hui发布了新的文献求助10
7秒前
小蜗牛完成签到,获得积分10
7秒前
番茄鱼完成签到 ,获得积分10
7秒前
qqq完成签到 ,获得积分10
7秒前
gooofy发布了新的文献求助50
8秒前
9秒前
9秒前
10秒前
j7完成签到 ,获得积分10
10秒前
10秒前
LaTeXer应助qinqinwy采纳,获得10
11秒前
12秒前
yznfly应助wang采纳,获得180
12秒前
believe完成签到,获得积分20
13秒前
qiuqi发布了新的文献求助10
13秒前
QLLW完成签到,获得积分10
14秒前
王cc发布了新的文献求助10
14秒前
jiuwu完成签到,获得积分10
15秒前
星辰大海应助Lu采纳,获得10
15秒前
沉静的煎蛋完成签到,获得积分10
16秒前
18秒前
18秒前
FashionBoy应助活泼醉冬采纳,获得10
19秒前
NexusExplorer应助hui采纳,获得10
19秒前
陈杰完成签到,获得积分10
21秒前
昭明完成签到 ,获得积分10
21秒前
璃光浮月发布了新的文献求助10
22秒前
22秒前
AquaR发布了新的文献求助10
22秒前
Rgly完成签到 ,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604083
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856973
捐赠科研通 4696430
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851