Pretrained transformers applied to clinical studies improve predictions of treatment efficacy and associated biomarkers

可解释性 人工智能 计算机科学 深度学习 机器学习 灵活性(工程) 背景(考古学) 强化学习 随机森林 数据科学 生物 数学 统计 古生物学
作者
Gustavo Arango-Argoty,Elly Kipkogei,Ross E. Stewart,Arijit Patra,Ioannis Kagiampakis,Etai Jacob
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:2
标识
DOI:10.1101/2023.09.12.23295357
摘要

Cancer treatment has made significant advancements in recent decades, leading to improved outcomes and quality of life for many patients. Despite the array of available therapies, including targeted, hormone, and checkpoint blockade immunotherapy, many patients experience treatment failure or eventual resistance. Attempts to predict the efficacy of therapies, particularly immuno-oncology therapies, have suffered from limited accuracy and difficulties in identifying molecular and other determinants of response. Improving treatment prediction alone is insufficient to create clinically meaningful research tools; additional prerequisites for this goal involve accommodating small data sets, effectively handling sparse features, integrating diverse clinical data, addressing missing measurements, ensuring interpretability, and extracting valuable biological insights for both clinical context and further research. Multimodal deep-learning models offer a promising avenue to surmount these challenges by leveraging their capacity and flexibility to learn from expansive and varied clinical and molecular data sets. Similar to their application in natural language and other domains, deep-learning models can uncover complex relationships within data that are pertinent to survival and treatment response. In this study, we introduce an explainable transformer-based deep-learning framework that addresses these challenges. This framework yields predictions of survival outcomes, as quantified by concordance index, that surpass the performance of state-of-the-art methods such as Cox proportional hazards, survival random forest, and tumor mutation burden, across diverse independent data sets. We developed the clinical transformer, a deep neural-network survival prediction framework that capitalizes on the flexibility of the deep-learning model, including training strategies like gradual and transfer learning, to maximize the use of available data to enhance survival predictions and generate actionable biological insights. Finally, we illustrate the future potential of the clinical transformer’s generative capability in early-stage clinical studies. By perturbing molecular features associated with immune checkpoint inhibition treatment in immunotherapy-naive patient profiles, we identified a subset of patients who may benefit from immunotherapy. These findings were subsequently validated across three independent immunotherapy treatment cohorts. We anticipate that this research will empower the scientific community to further harness data for the benefit of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
初亦非发布了新的文献求助10
1秒前
茜茜哎科研完成签到,获得积分10
2秒前
ss完成签到,获得积分10
2秒前
zkylh应助CG2021采纳,获得10
2秒前
3秒前
健壮台灯完成签到,获得积分10
3秒前
周涛完成签到,获得积分10
3秒前
HY完成签到,获得积分10
4秒前
hap完成签到,获得积分10
4秒前
Ll完成签到 ,获得积分10
5秒前
小伍同学完成签到,获得积分10
5秒前
5秒前
荣冥幽发布了新的文献求助10
6秒前
Hudson完成签到,获得积分10
6秒前
Hungrylunch应助袁小圆采纳,获得20
7秒前
虚幻初之完成签到,获得积分10
7秒前
Mireia完成签到,获得积分10
7秒前
于生有你完成签到,获得积分10
7秒前
kai完成签到,获得积分10
8秒前
饱满若灵发布了新的文献求助10
9秒前
9秒前
a111完成签到,获得积分10
10秒前
10秒前
初亦非完成签到,获得积分10
10秒前
Young完成签到 ,获得积分10
10秒前
10秒前
sum42发布了新的文献求助200
11秒前
saya发布了新的文献求助10
11秒前
Carl发布了新的文献求助10
11秒前
sandyhaikeyi发布了新的文献求助10
12秒前
qiuyue发布了新的文献求助10
12秒前
雷霆康康完成签到,获得积分10
12秒前
木槿花难开完成签到,获得积分10
13秒前
13秒前
健忘曼云完成签到,获得积分10
14秒前
苏尔琳诺完成签到,获得积分10
15秒前
小豆包科研冲刺者完成签到,获得积分10
15秒前
木樨完成签到,获得积分10
15秒前
小星云发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3511015
求助须知:如何正确求助?哪些是违规求助? 3093770
关于积分的说明 9219342
捐赠科研通 2788253
什么是DOI,文献DOI怎么找? 1530096
邀请新用户注册赠送积分活动 710736
科研通“疑难数据库(出版商)”最低求助积分说明 706375