Secure Federated Learning With Fully Homomorphic Encryption for IoT Communications

计算机科学 同态加密 加密 架空(工程) 密码学 计算机网络 安全通信 信息隐私 移动设备 计算机安全 操作系统
作者
Neveen Hijazi,Moayad Aloqaily,Mohsen Guizani,Bassem Ouni,Fakhri Karray
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 4289-4300 被引量:38
标识
DOI:10.1109/jiot.2023.3302065
摘要

The emergence of the Internet of Things (IoT) has revolutionized people's daily lives, providing superior quality services in cognitive cities, healthcare, and smart buildings. However, smart buildings use heterogeneous networks. The massive number of interconnected IoT devices increases the possibility of IoT attacks, emphasizing the necessity of secure and privacy-preserving solutions. Federated learning (FL) has recently emerged as a promising machine learning (ML) paradigm for IoT networks to address these concerns. In FL, multiple devices collaborate to learn a global model without sharing their raw data. However, FL still faces privacy and security concerns due to the transmission of sensitive data (i.e., model parameters) over insecure communication channels. These concerns can be addressed using fully homomorphic encryption (FHE), a powerful cryptographic technique that enables computations on encrypted data without requiring them to be decrypted first. In this study, we propose a secure FL approach in IoT-enabled smart cities that combines FHE and FL to provide secure data and maintain privacy in distributed environments. We present four different FL-based FHE approaches in which data are encrypted and transmitted over a secure medium. The proposed approaches achieved high accuracy, recall, precision, and F-scores, in addition to providing strong privacy and security safeguards. Furthermore, the proposed approaches effectively reduced communication overhead and latency compared to the baseline approach. These approaches yielded improvements ranging from 80.15% to 89.98% in minimizing communication overhead. Additionally, one of the approaches achieved a remarkable latency reduction of 70.38%. The implementation of these security models is nontrivial, and the code is publicly available at https://github.com/Artifitialleap-MBZUAI/Secure-Federated-Learning-with-Fully-Homomorphic-Encryption-for-IoT-Communications .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗满天完成签到 ,获得积分10
1秒前
1秒前
1秒前
成就缘分发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
li发布了新的文献求助10
2秒前
胡枝子发布了新的文献求助30
3秒前
季悦完成签到,获得积分10
3秒前
BaiX完成签到,获得积分10
3秒前
3秒前
顾矜应助ttssooe采纳,获得10
3秒前
4秒前
共享精神应助罗mian采纳,获得10
4秒前
亭语完成签到 ,获得积分0
5秒前
重要清涟完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
BaiX发布了新的文献求助10
6秒前
6秒前
路旁小白完成签到,获得积分10
6秒前
枫桥完成签到 ,获得积分10
6秒前
彭于晏应助zhonghbush采纳,获得10
7秒前
秦玉蓉完成签到,获得积分10
7秒前
小文cremen完成签到 ,获得积分10
8秒前
Owen应助千里采纳,获得10
9秒前
o10发布了新的文献求助10
9秒前
MADKAI发布了新的文献求助10
9秒前
紧张的梦岚应助开放雁丝采纳,获得20
9秒前
淇淇怪怪发布了新的文献求助10
10秒前
深情安青应助呼叫554采纳,获得30
10秒前
zhuiyu完成签到,获得积分10
10秒前
鲜艳的手链完成签到,获得积分10
10秒前
知性的以筠完成签到,获得积分10
11秒前
leiyang49完成签到,获得积分10
11秒前
11秒前
李小伟完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672