Secure Federated Learning With Fully Homomorphic Encryption for IoT Communications

计算机科学 同态加密 加密 架空(工程) 密码学 计算机网络 安全通信 信息隐私 移动设备 计算机安全 操作系统
作者
Neveen Hijazi,Moayad Aloqaily,Mohsen Guizani,Bassem Ouni,Fakhri Karray
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 4289-4300 被引量:141
标识
DOI:10.1109/jiot.2023.3302065
摘要

The emergence of the Internet of Things (IoT) has revolutionized people's daily lives, providing superior quality services in cognitive cities, healthcare, and smart buildings. However, smart buildings use heterogeneous networks. The massive number of interconnected IoT devices increases the possibility of IoT attacks, emphasizing the necessity of secure and privacy-preserving solutions. Federated learning (FL) has recently emerged as a promising machine learning (ML) paradigm for IoT networks to address these concerns. In FL, multiple devices collaborate to learn a global model without sharing their raw data. However, FL still faces privacy and security concerns due to the transmission of sensitive data (i.e., model parameters) over insecure communication channels. These concerns can be addressed using fully homomorphic encryption (FHE), a powerful cryptographic technique that enables computations on encrypted data without requiring them to be decrypted first. In this study, we propose a secure FL approach in IoT-enabled smart cities that combines FHE and FL to provide secure data and maintain privacy in distributed environments. We present four different FL-based FHE approaches in which data are encrypted and transmitted over a secure medium. The proposed approaches achieved high accuracy, recall, precision, and F-scores, in addition to providing strong privacy and security safeguards. Furthermore, the proposed approaches effectively reduced communication overhead and latency compared to the baseline approach. These approaches yielded improvements ranging from 80.15% to 89.98% in minimizing communication overhead. Additionally, one of the approaches achieved a remarkable latency reduction of 70.38%. The implementation of these security models is nontrivial, and the code is publicly available at https://github.com/Artifitialleap-MBZUAI/Secure-Federated-Learning-with-Fully-Homomorphic-Encryption-for-IoT-Communications .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助南音采纳,获得10
刚刚
桐桐应助南音采纳,获得10
刚刚
bkagyin应助南音采纳,获得10
刚刚
充电宝应助南音采纳,获得10
刚刚
善学以致用应助南音采纳,获得10
刚刚
完美世界应助南音采纳,获得10
刚刚
SciGPT应助南音采纳,获得10
刚刚
共享精神应助南音采纳,获得10
刚刚
Hello应助南音采纳,获得10
刚刚
缓慢的高山应助南音采纳,获得10
刚刚
彭于晏应助我只吃一碗采纳,获得10
刚刚
zack发布了新的文献求助10
1秒前
科研通AI2S应助刻苦的幼晴采纳,获得10
1秒前
斯文网络完成签到,获得积分10
1秒前
hautzhl完成签到,获得积分10
1秒前
1秒前
2秒前
eason发布了新的文献求助10
3秒前
忙与闲都伤完成签到,获得积分10
3秒前
3秒前
chillax发布了新的文献求助10
3秒前
机智完成签到,获得积分20
3秒前
段辉发布了新的文献求助10
4秒前
优雅山柏完成签到,获得积分10
4秒前
4秒前
英俊的铭应助羊玉林采纳,获得10
4秒前
123发布了新的文献求助10
5秒前
5秒前
海咲umi发布了新的文献求助10
6秒前
6秒前
hanshishengye完成签到 ,获得积分10
6秒前
王迪发布了新的文献求助10
6秒前
美好斓发布了新的文献求助10
7秒前
7秒前
Stella应助Clover04采纳,获得10
7秒前
7秒前
小葡萄完成签到 ,获得积分10
7秒前
充满希望完成签到,获得积分10
8秒前
乐乐应助falseme采纳,获得10
8秒前
8秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587595
求助须知:如何正确求助?哪些是违规求助? 4670789
关于积分的说明 14784044
捐赠科研通 4623168
什么是DOI,文献DOI怎么找? 2531360
邀请新用户注册赠送积分活动 1500028
关于科研通互助平台的介绍 1468099