计算生物学
计算机科学
匹配(统计)
可视化
仿形(计算机编程)
空间分析
数据挖掘
生物
地理
数学
遥感
统计
操作系统
作者
Zefang Tang,Shuchen Luo,Hu Zeng,Jiahao Huang,Morgan Wu,Xiao Wang
标识
DOI:10.1101/2023.08.13.552987
摘要
Spatial omics technologies characterize tissue molecular properties with spatial information, but integrating and comparing spatial data across different technologies and modalities is challenging. A comparative analysis tool that can search, match, and visualize both similarities and differences of molecular features in space across multiple samples is lacking. To address this, we introduce CAST ( C ross-sample A lignment of S pa T ial omics), a deep graph neural network (GNN)-based method enabling spatial-to-spatial searching and matching at the single-cell level. CAST aligns tissues based on intrinsic similarities of spatial molecular features and reconstructs spatially resolved single-cell multi-omic profiles. CAST enables spatially resolved differential analysis (ΔAnalysis) to pinpoint and visualize disease-associated molecular pathways and cell-cell interactions, and single-cell relative translational efficiency (scRTE) profiling to reveal variations in translational control across cell types and regions. CAST serves as an integrative framework for seamless single-cell spatial data searching and matching across technologies, modalities, and disease conditions, analogous to BLAST in sequence alignment.
科研通智能强力驱动
Strongly Powered by AbleSci AI