Advances in Hyperspectral Image Classification Methods with Small Samples: A Review

计算机科学 分类学(生物学) 高光谱成像 数据科学 人工智能 数据挖掘 生态学 生物
作者
Xiaozhen Wang,Jiahang Liu,Weijian Chi,Weigang Wang,Yue Ni
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (15): 3795-3795 被引量:10
标识
DOI:10.3390/rs15153795
摘要

Hyperspectral image (HSI) classification is one of the hotspots in remote sensing, and many methods have been continuously proposed in recent years. However, it is still challenging to achieve high accuracy classification in applications. One of the main reasons is the lack of labeled data. Due to the limitation of spatial resolution, manual labeling of HSI data is time-consuming and costly, so it is difficult to obtain a large amount of labeled data. In such a situation, many researchers turn their attention to the study of HSI classification with small samples. Focusing on this topic, this paper provides a systematic review of the research progress in recent years. Specifically, this paper contains three aspects. First, considering that the taxonomy used in previous review articles is not well-developed and confuses the reader, we propose a novel taxonomy based on the form of data utilization. This taxonomy provides a more accurate and comprehensive framework for categorizing the various approaches. Then, using the proposed taxonomy as a guideline, we analyze and summarize the existing methods, especially the latest research results (both deep and non-deep models) that were not included in the previous reviews, so that readers can understand the latest progress more clearly. Finally, we conduct several sets of experiments and present our opinions on current problems and future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助deng采纳,获得30
1秒前
1秒前
辛勤者应助exosome采纳,获得200
1秒前
落叶发布了新的文献求助10
2秒前
CodeCraft应助12采纳,获得10
2秒前
科研通AI6应助gqb采纳,获得10
2秒前
2秒前
小蘑菇应助悦耳的黑米采纳,获得10
3秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
小时候完成签到,获得积分10
6秒前
逍遥发布了新的文献求助10
6秒前
无声瀑布发布了新的文献求助10
6秒前
Andy完成签到,获得积分10
6秒前
7秒前
8秒前
Akim应助星落枝头采纳,获得10
8秒前
sjhz发布了新的文献求助10
8秒前
8秒前
10秒前
马以琳发布了新的文献求助10
11秒前
11秒前
苏南发布了新的文献求助10
11秒前
传奇3应助牛羊不吃草采纳,获得10
13秒前
archer01发布了新的文献求助10
14秒前
14秒前
14秒前
崔哥发布了新的文献求助10
15秒前
TRY发布了新的文献求助10
16秒前
16秒前
漂亮夏兰发布了新的文献求助10
17秒前
18秒前
Mansis发布了新的文献求助30
18秒前
我是老大应助archer01采纳,获得10
19秒前
20秒前
浮游应助keyanlv采纳,获得10
21秒前
星落枝头发布了新的文献求助10
21秒前
21秒前
雪松完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436160
求助须知:如何正确求助?哪些是违规求助? 4548217
关于积分的说明 14212695
捐赠科研通 4468449
什么是DOI,文献DOI怎么找? 2449020
邀请新用户注册赠送积分活动 1439955
关于科研通互助平台的介绍 1416594