Fault diagnosis in rotating machines based on transfer learning: Literature review

计算机科学 机器学习 相关性(法律) 鉴定(生物学) 学习迁移 人工智能 断层(地质) 特征(语言学) 钥匙(锁) 数据科学 知识转移 知识管理 哲学 地质学 生物 植物 地震学 法学 语言学 计算机安全 政治学
作者
Iqbal Misbah,C.K.M. Lee,K. L. Keung
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:283: 111158-111158 被引量:32
标识
DOI:10.1016/j.knosys.2023.111158
摘要

With the emergence of machine learning methods, data-driven fault diagnosis has gained significant attention in recent years. However, traditional data-driven diagnosis approaches do not apply to engineering diagnosis problemssince they require that training and testing data have a consistent distribution. Transfer learning (TL) approaches for fault diagnosis are gaining popularity as a means of resolving this issue. These approaches aim to design models efficiently addressing target tasks by leveraging data from related but distinct source domains. The purpose of this study is to present a comprehensive survey of the recent progress made in applying TL techniques to diagnose faults in rotating machines. An overview of parameter-based, instance-based, feature-based, and relevance-based knowledge transfer is provided, followed by a summary of the various categories under which knowledge is transferred. These categories encompass various working environments, different machines, fault locations and their severity, imbalanced data, and more.This paper offers its readers a framework that can assist them in better understanding and recognizing the research status, problems, and future directions of transfer learning techniques for fault identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
snail完成签到,获得积分10
1秒前
劈里啪啦完成签到,获得积分10
1秒前
wanci应助Jasmine采纳,获得10
2秒前
aoxiangcaizi12完成签到,获得积分10
2秒前
ding应助通~采纳,获得30
3秒前
4秒前
Annie发布了新的文献求助10
4秒前
晨曦完成签到,获得积分10
5秒前
十一发布了新的文献求助10
5秒前
顾矜应助Peter采纳,获得30
6秒前
Ayanami完成签到,获得积分10
6秒前
英俊的铭应助ysl采纳,获得30
6秒前
酷波er应助范范采纳,获得10
6秒前
7秒前
Akim应助damian采纳,获得30
7秒前
7秒前
9秒前
番茄炒西红柿完成签到,获得积分10
10秒前
无限安蕾完成签到,获得积分10
10秒前
10秒前
飘逸蘑菇发布了新的文献求助10
11秒前
混沌完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
xg发布了新的文献求助10
13秒前
看看发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
Annie完成签到,获得积分10
15秒前
15秒前
通~发布了新的文献求助30
16秒前
16秒前
雨雾发布了新的文献求助10
17秒前
daiyapeng完成签到,获得积分10
17秒前
ivy应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794