亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Infant death prediction using machine learning: A population-based retrospective study

医学 婴儿死亡率 人口 回顾性队列研究 胎龄 机器学习 出生体重 产前护理 阿普加评分 儿科 怀孕 计算机科学 环境卫生 内科学 遗传学 生物
作者
Zhihong Zhang,Qinqin Xiao,Jiebo Luo
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107423-107423 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107423
摘要

Despite declines in infant death rates in recent decades in the United States, the national goal of reducing infant death has not been reached. This study aims to predict infant death using machine-learning approaches.A population-based retrospective study of live births in the United States between 2016 and 2021 was conducted. Thirty-three factors related to birth facility, prenatal care and pregnancy history, labor and delivery, and newborn characteristics were used to predict infant death.XGBoost demonstrated superior performance compared to the other four compared machine learning models. The original imbalanced dataset yielded better results than the balanced datasets created through oversampling procedures. The cross-validation of the XGBoost-based model consistently achieved high performance during both the pre-pandemic (2016-2019) and pandemic (2020-2021) periods. Specifically, the XGBoost-based model performed exceptionally well in predicting neonatal death (AUC: 0.98). The key predictors of infant death were identified as gestational age, birth weight, 5-min APGAR score, and prenatal visits. A simplified model based on these four predictors resulted in slightly inferior yet comparable performance to the all-predictor model (AUC: 0.91 vs. 0.93). Furthermore, the four-factor risk classification system effectively identified infant deaths in 2020 and 2021 for high-risk (88.7%-89.0%), medium-risk (4.6%-5.4%), and low-risk groups (0.1), outperforming the risk screening tool based on accumulated risk factors.XGBoost-based models excel in predicting infant death, providing valuable prognostic information for perinatal care education and counselling. The simplified four-predictor classification system could serve as a practical alternative for infant death risk prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shihuan完成签到,获得积分10
4秒前
wrl2023完成签到,获得积分10
36秒前
GingerF应助科研通管家采纳,获得50
40秒前
我是老大应助科研通管家采纳,获得10
40秒前
Allen完成签到,获得积分20
1分钟前
濮阳灵竹完成签到,获得积分10
1分钟前
英俊的铭应助红娘采纳,获得10
1分钟前
1分钟前
清脆的飞丹完成签到,获得积分10
1分钟前
2分钟前
2分钟前
Allen发布了新的文献求助30
2分钟前
红娘发布了新的文献求助10
2分钟前
yingwang完成签到 ,获得积分10
2分钟前
2分钟前
红娘完成签到,获得积分10
2分钟前
2分钟前
飞天大南瓜完成签到,获得积分10
3分钟前
笑点低的斑马完成签到,获得积分10
3分钟前
橙子完成签到 ,获得积分10
3分钟前
铭铭铭完成签到,获得积分10
3分钟前
科研通AI6应助Allen采纳,获得10
3分钟前
共享精神应助起名太难了采纳,获得10
3分钟前
3分钟前
4分钟前
taster发布了新的文献求助10
4分钟前
4分钟前
春秋发布了新的文献求助10
4分钟前
搜集达人应助taster采纳,获得10
4分钟前
4分钟前
春秋完成签到,获得积分20
4分钟前
PAIDAXXXX完成签到,获得积分10
4分钟前
困困发布了新的文献求助10
4分钟前
困困完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
顾矜应助sanner采纳,获得10
5分钟前
情怀应助Alay采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232790
求助须知:如何正确求助?哪些是违规求助? 4401986
关于积分的说明 13699526
捐赠科研通 4268459
什么是DOI,文献DOI怎么找? 2342582
邀请新用户注册赠送积分活动 1339590
关于科研通互助平台的介绍 1296365