Infant death prediction using machine learning: A population-based retrospective study

医学 婴儿死亡率 人口 回顾性队列研究 胎龄 机器学习 出生体重 产前护理 阿普加评分 儿科 怀孕 计算机科学 环境卫生 内科学 生物 遗传学
作者
Zhihong Zhang,Qinqin Xiao,Jiebo Luo
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107423-107423 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107423
摘要

Despite declines in infant death rates in recent decades in the United States, the national goal of reducing infant death has not been reached. This study aims to predict infant death using machine-learning approaches.A population-based retrospective study of live births in the United States between 2016 and 2021 was conducted. Thirty-three factors related to birth facility, prenatal care and pregnancy history, labor and delivery, and newborn characteristics were used to predict infant death.XGBoost demonstrated superior performance compared to the other four compared machine learning models. The original imbalanced dataset yielded better results than the balanced datasets created through oversampling procedures. The cross-validation of the XGBoost-based model consistently achieved high performance during both the pre-pandemic (2016-2019) and pandemic (2020-2021) periods. Specifically, the XGBoost-based model performed exceptionally well in predicting neonatal death (AUC: 0.98). The key predictors of infant death were identified as gestational age, birth weight, 5-min APGAR score, and prenatal visits. A simplified model based on these four predictors resulted in slightly inferior yet comparable performance to the all-predictor model (AUC: 0.91 vs. 0.93). Furthermore, the four-factor risk classification system effectively identified infant deaths in 2020 and 2021 for high-risk (88.7%-89.0%), medium-risk (4.6%-5.4%), and low-risk groups (0.1), outperforming the risk screening tool based on accumulated risk factors.XGBoost-based models excel in predicting infant death, providing valuable prognostic information for perinatal care education and counselling. The simplified four-predictor classification system could serve as a practical alternative for infant death risk prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
3秒前
5秒前
万能图书馆应助Oliver采纳,获得10
6秒前
lixuan发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
xuejunshuai发布了新的文献求助20
9秒前
ncjyl发布了新的文献求助10
9秒前
10秒前
韩涵发布了新的文献求助10
10秒前
开放夏旋完成签到,获得积分10
11秒前
SUPERBIA完成签到,获得积分20
11秒前
nylon完成签到,获得积分10
12秒前
干净柏柳完成签到 ,获得积分10
12秒前
111发布了新的文献求助10
13秒前
14秒前
14秒前
科研猫完成签到,获得积分10
14秒前
充电宝应助故意的访云采纳,获得10
15秒前
森77完成签到,获得积分10
15秒前
langwei完成签到,获得积分10
18秒前
脑子大聪明完成签到,获得积分10
18秒前
ncjyl完成签到,获得积分10
18秒前
18秒前
hhhi完成签到,获得积分10
18秒前
王娟完成签到,获得积分10
19秒前
大瓶子完成签到,获得积分10
19秒前
19秒前
yyyyyyy发布了新的文献求助10
19秒前
学术小白w完成签到 ,获得积分10
19秒前
20秒前
21秒前
21秒前
偷得浮生半日闲完成签到,获得积分10
22秒前
研友_VZG7GZ应助与桉采纳,获得10
22秒前
沐夕完成签到,获得积分10
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979946
求助须知:如何正确求助?哪些是违规求助? 3524093
关于积分的说明 11219832
捐赠科研通 3261529
什么是DOI,文献DOI怎么找? 1800686
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807226