清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Infant death prediction using machine learning: A population-based retrospective study

医学 婴儿死亡率 人口 回顾性队列研究 胎龄 机器学习 出生体重 产前护理 阿普加评分 儿科 怀孕 计算机科学 环境卫生 内科学 生物 遗传学
作者
Zhihong Zhang,Qinqin Xiao,Jiebo Luo
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107423-107423 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.107423
摘要

Despite declines in infant death rates in recent decades in the United States, the national goal of reducing infant death has not been reached. This study aims to predict infant death using machine-learning approaches.A population-based retrospective study of live births in the United States between 2016 and 2021 was conducted. Thirty-three factors related to birth facility, prenatal care and pregnancy history, labor and delivery, and newborn characteristics were used to predict infant death.XGBoost demonstrated superior performance compared to the other four compared machine learning models. The original imbalanced dataset yielded better results than the balanced datasets created through oversampling procedures. The cross-validation of the XGBoost-based model consistently achieved high performance during both the pre-pandemic (2016-2019) and pandemic (2020-2021) periods. Specifically, the XGBoost-based model performed exceptionally well in predicting neonatal death (AUC: 0.98). The key predictors of infant death were identified as gestational age, birth weight, 5-min APGAR score, and prenatal visits. A simplified model based on these four predictors resulted in slightly inferior yet comparable performance to the all-predictor model (AUC: 0.91 vs. 0.93). Furthermore, the four-factor risk classification system effectively identified infant deaths in 2020 and 2021 for high-risk (88.7%-89.0%), medium-risk (4.6%-5.4%), and low-risk groups (0.1), outperforming the risk screening tool based on accumulated risk factors.XGBoost-based models excel in predicting infant death, providing valuable prognostic information for perinatal care education and counselling. The simplified four-predictor classification system could serve as a practical alternative for infant death risk prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
mmyhn发布了新的文献求助10
35秒前
49秒前
51秒前
笨笨青筠完成签到 ,获得积分10
1分钟前
1分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
完美世界应助wangqinlei采纳,获得10
2分钟前
2分钟前
wangqinlei发布了新的文献求助10
2分钟前
wangqinlei完成签到,获得积分10
2分钟前
2分钟前
woxinyouyou完成签到,获得积分0
3分钟前
夏姬宁静发布了新的文献求助30
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
一路向北发布了新的文献求助10
4分钟前
皮皮完成签到 ,获得积分10
4分钟前
红绿蓝完成签到 ,获得积分10
5分钟前
5分钟前
隐形曼青应助zengtx1采纳,获得10
5分钟前
陶醉的蜜蜂完成签到 ,获得积分10
5分钟前
爱心完成签到 ,获得积分10
6分钟前
英俊的铭应助科研通管家采纳,获得10
6分钟前
方白秋完成签到,获得积分10
7分钟前
7分钟前
7分钟前
FashionBoy应助有魅力老头采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
完美世界应助科研通管家采纳,获得10
8分钟前
上官若男应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413394
求助须知:如何正确求助?哪些是违规求助? 3015724
关于积分的说明 8871679
捐赠科研通 2703456
什么是DOI,文献DOI怎么找? 1482290
科研通“疑难数据库(出版商)”最低求助积分说明 685177
邀请新用户注册赠送积分活动 679951