Infant death prediction using machine learning: A population-based retrospective study

医学 婴儿死亡率 人口 回顾性队列研究 胎龄 机器学习 出生体重 产前护理 阿普加评分 儿科 怀孕 计算机科学 环境卫生 内科学 遗传学 生物
作者
Zhihong Zhang,Qinqin Xiao,Jiebo Luo
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107423-107423 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.107423
摘要

Despite declines in infant death rates in recent decades in the United States, the national goal of reducing infant death has not been reached. This study aims to predict infant death using machine-learning approaches.A population-based retrospective study of live births in the United States between 2016 and 2021 was conducted. Thirty-three factors related to birth facility, prenatal care and pregnancy history, labor and delivery, and newborn characteristics were used to predict infant death.XGBoost demonstrated superior performance compared to the other four compared machine learning models. The original imbalanced dataset yielded better results than the balanced datasets created through oversampling procedures. The cross-validation of the XGBoost-based model consistently achieved high performance during both the pre-pandemic (2016-2019) and pandemic (2020-2021) periods. Specifically, the XGBoost-based model performed exceptionally well in predicting neonatal death (AUC: 0.98). The key predictors of infant death were identified as gestational age, birth weight, 5-min APGAR score, and prenatal visits. A simplified model based on these four predictors resulted in slightly inferior yet comparable performance to the all-predictor model (AUC: 0.91 vs. 0.93). Furthermore, the four-factor risk classification system effectively identified infant deaths in 2020 and 2021 for high-risk (88.7%-89.0%), medium-risk (4.6%-5.4%), and low-risk groups (0.1), outperforming the risk screening tool based on accumulated risk factors.XGBoost-based models excel in predicting infant death, providing valuable prognostic information for perinatal care education and counselling. The simplified four-predictor classification system could serve as a practical alternative for infant death risk prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助tracer526采纳,获得10
刚刚
独特广山发布了新的文献求助10
1秒前
2秒前
曾经沛白完成签到 ,获得积分10
4秒前
Jasper应助善良的广缘采纳,获得10
4秒前
Yan完成签到,获得积分10
5秒前
5秒前
muzian完成签到 ,获得积分10
6秒前
chenzhi发布了新的文献求助10
7秒前
爱听歌老1完成签到,获得积分10
9秒前
wzppp发布了新的文献求助10
9秒前
10秒前
大个应助zhu采纳,获得10
13秒前
regina完成签到 ,获得积分10
14秒前
15秒前
ll完成签到,获得积分20
17秒前
香蕉诗蕊举报不知道叫啥求助涉嫌违规
18秒前
19秒前
隐形曼青应助我不爱池鱼采纳,获得20
19秒前
小马甲应助chenzhi采纳,获得10
27秒前
33秒前
勤恳的念真完成签到,获得积分10
35秒前
儒雅的山河完成签到 ,获得积分10
36秒前
李健的小迷弟应助逸风望采纳,获得10
36秒前
37秒前
tracer526发布了新的文献求助10
38秒前
徐悦月发布了新的文献求助10
40秒前
41秒前
ccrr完成签到 ,获得积分10
41秒前
韩常利发布了新的文献求助10
43秒前
44秒前
45秒前
领导范儿应助t忒对采纳,获得10
46秒前
科研通AI6应助dvdb采纳,获得10
47秒前
科研通AI6应助dvdb采纳,获得10
47秒前
逸风望发布了新的文献求助10
50秒前
Lny发布了新的文献求助10
50秒前
666完成签到 ,获得积分10
50秒前
kevin完成签到 ,获得积分10
51秒前
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645567
关于积分的说明 14675591
捐赠科研通 4586746
什么是DOI,文献DOI怎么找? 2516526
邀请新用户注册赠送积分活动 1490130
关于科研通互助平台的介绍 1460963