GenerativeMTD: A deep synthetic data generation framework for small datasets

计算机科学 水准点(测量) 数据挖掘 成对比较 合成数据 深度学习 k-最近邻算法 忠诚 小数据 人工智能 生成模型 机器学习 生成语法 大地测量学 电信 地理
作者
Jayanth Sivakumar,R. Karthik,Menaka Radhakrishnan,Daehan Won
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:280: 110956-110956 被引量:5
标识
DOI:10.1016/j.knosys.2023.110956
摘要

Synthetic data generation for tabular data unlike computer vision, is an emerging challenge. When tabular data needs to be synthesized, it either faces a small dataset problem or violates privacy if the data contains sensitive information. When the data is small, any data-driven modeling leads to biased decision making. On the other hand, deep learning models that use small dataset for training are limited. Tabular data also faces a myriad of challenges, such as mixed data types, fidelity, mode collapse, etc. To eradicate small dataset problems and increase the deep learning capabilities on small data, a new generative method, GenerativeMTD, is proposed in this research. The method generates fake data by using pseudo-real data as input during the training. Pseudo-real data serves the purpose of training the deep learning model with large samples when the real dataset size is small. The pseudo-real data is generated from the real data through k-nearest neighbor mega-trend diffusion. This pseudo-real data is then translated into synthetic data that is similar and realistic to the real data. The method outperforms some of the state-of-the-art methodologies that exist in tabular data generation. The proposed method also generates quality synthetic data for the benchmark datasets in terms of pairwise correlation differences. In addition, the method surpasses the benchmark models in terms of the distance-based privacy metrics: distance to the closest record and nearest neighbor distance ratio.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玻璃杯发布了新的文献求助10
刚刚
Lucas应助睡睡采纳,获得10
1秒前
2秒前
Murphy完成签到,获得积分10
3秒前
两棵大白菜完成签到,获得积分10
3秒前
dandelionshun完成签到,获得积分10
4秒前
kk发布了新的文献求助10
4秒前
李爱国应助hyx采纳,获得10
4秒前
傲娇的觅翠完成签到,获得积分10
4秒前
赘婿应助紫陌采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
英姑应助忘年交采纳,获得10
5秒前
6秒前
dandelionshun发布了新的文献求助10
8秒前
喻安琪完成签到 ,获得积分10
10秒前
1435945988完成签到,获得积分20
10秒前
absb发布了新的文献求助10
10秒前
11秒前
CipherSage应助健忘远山采纳,获得30
12秒前
嘟嘟嘟嘟发布了新的文献求助10
13秒前
李爱国应助热情的未来采纳,获得10
14秒前
Aurora.H发布了新的文献求助10
15秒前
白日焰火发布了新的文献求助10
15秒前
16秒前
17秒前
wu8577应助WN采纳,获得10
17秒前
yiren完成签到,获得积分10
18秒前
哈皮完成签到,获得积分10
19秒前
axis完成签到,获得积分10
19秒前
ding应助kk采纳,获得100
20秒前
小歪发布了新的文献求助10
20秒前
钦林完成签到,获得积分10
20秒前
warden完成签到 ,获得积分10
21秒前
TY完成签到 ,获得积分10
21秒前
Morton发布了新的文献求助10
22秒前
斯可完成签到,获得积分10
23秒前
阳光飞风完成签到,获得积分20
23秒前
24秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502770
关于积分的说明 11110029
捐赠科研通 3233693
什么是DOI,文献DOI怎么找? 1787452
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152