Identifying sex differences in EEG-based emotion recognition using graph convolutional network with attention mechanism

厌恶 脑电图 悲伤 幸福 情绪分类 心理学 机制(生物学) 愤怒 认知心理学 情绪识别 发展心理学 社会心理学 神经科学 哲学 认识论
作者
Dan Peng,Wei‐Long Zheng,Luyu Liu,Wei-Bang Jiang,Ziyi Li,Yong Lu,Bao-Liang Lu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066010-066010 被引量:3
标识
DOI:10.1088/1741-2552/ad085a
摘要

Sex differences in emotions have been widely perceived via self-reports, peripheral physiological signals and brain imaging techniques. However, how sex differences are reflected in the EEG neural patterns of emotions remains unresolved. In this paper, we detect sex differences in emotional EEG patterns, investigate the consistency of such differences in various emotion datasets across cultures, and study how sex as a factor affects the performance of EEG-based emotion recognition models.We thoroughly assess sex differences in emotional EEG patterns on five public datasets, including SEED, SEED-IV, SEED-V, DEAP and DREAMER, systematically examine the sex-specific EEG patterns for happy, sad, fearful, disgusted and neutral emotions, and implement deep learning models for sex-specific emotion recognition.(1) Sex differences exist in various emotion types and both Western and Eastern cultures; (2) The emotion patterns of females are more stable than those of males, and the patterns of happiness from females are in sharp contrast with the patterns of sadness, fear and disgust, while the energy levels are more balanced for males; (3) The key features for emotion recognition are mainly located at the frontal and temporal sites for females and distributed more evenly over the whole brain for males, and (4) The same-sex emotion recognition models outperform the corresponding cross-sex models.These findings extend efforts to characterize sex differences in emotional brain activation, provide new physiological evidence for sex-specific emotion processing, and reinforce the message that sex differences should be carefully considered in affective research and precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小人物的坚持完成签到 ,获得积分10
刚刚
Akin完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
明亮的幻然完成签到,获得积分10
3秒前
就喜欢你萌完成签到,获得积分10
4秒前
小白完成签到,获得积分10
4秒前
Owen应助感动归尘采纳,获得10
4秒前
4秒前
糖糖完成签到,获得积分10
5秒前
5秒前
ss发布了新的文献求助10
5秒前
飘逸的虔发布了新的文献求助10
6秒前
游鱼发布了新的文献求助10
6秒前
嗯嗯完成签到 ,获得积分10
7秒前
QJ发布了新的文献求助10
7秒前
丘比特应助九九采纳,获得10
7秒前
万能图书馆应助糖糖采纳,获得10
9秒前
10秒前
星辰发布了新的文献求助10
11秒前
飘逸的虔完成签到,获得积分10
12秒前
12秒前
kyt完成签到,获得积分10
13秒前
游鱼完成签到,获得积分10
15秒前
15秒前
15秒前
tigger完成签到 ,获得积分10
16秒前
jia发布了新的文献求助10
16秒前
shishishiya完成签到,获得积分10
17秒前
NexusExplorer应助微糖采纳,获得10
17秒前
19秒前
19秒前
20秒前
经过完成签到,获得积分10
20秒前
传奇3应助xuuuuu采纳,获得10
21秒前
zlh完成签到 ,获得积分10
21秒前
22秒前
8R60d8应助十戈橙采纳,获得10
23秒前
接心软审稿人完成签到 ,获得积分10
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233472
求助须知:如何正确求助?哪些是违规求助? 2880022
关于积分的说明 8213600
捐赠科研通 2547449
什么是DOI,文献DOI怎么找? 1376954
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623154