Adaptive neuro-fuzzy inference system model driven by the non-negative matrix factorization-extracted muscle synergy patterns to estimate lower limb joint movements

运动学 计算机科学 自适应神经模糊推理系统 肌电图 物理医学与康复 支持向量机 模糊逻辑 人工智能 模式识别(心理学) 模糊控制系统 医学 物理 经典力学
作者
Datao Xu,Huiyu Zhou,Wenjing Quan,Gusztáv Fekete,Julien S. Baker,Yaodong Gu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:242: 107848-107848 被引量:12
标识
DOI:10.1016/j.cmpb.2023.107848
摘要

For patients with movement disorders, the main clinical focus is on exercise rehabilitation to help recover lost motor function, which is achieved by relevant assisted equipment. The basis for seamless control of the assisted equipment is to achieve accurate inference of the user's movement intentions in the human-machine interface. This study proposed a novel movement intention detection technology for estimating lower limb joint continuous kinematic variables following muscle synergy patterns, to develop applications for more efficient assisted rehabilitation training.This study recruited 16 healthy males and 16 male patients with symptomatic patellar tendinopathy (VISA-P: 59.1 ± 8.7). The surface electromyography of 12 muscles and lower limb joint kinematic and kinetic data from healthy subjects and patients during step-off landings from 30 cm-high stair steps were collected. We subsequently solved the preprocessed data based on the established recursive model of second-order differential equation to obtain the muscle activation matrix, and then imported it into the non-negative matrix factorization model to obtain the muscle synergy matrix. Finally, the lower limb neuromuscular synergy pattern was then imported into the developed adaptive neuro-fuzzy inference system non-linear regression model to estimate the human movement intention during this movement pattern.Six muscle synergies were determined to construct the muscle synergy pattern driven ANFIS model. Three fuzzy rules were determined in most estimation cases. Combining the results of the four error indicators across the estimated variables indicates that the current model has excellent estimated performance in estimating lower limb joint movement. The estimation errors between the healthy (Angle: R2=0.98±0.03; Torque: R2=0.96±0.04) and patient (Angle: R2=0.98±0.02; Torque: R2=0.96±0.03) groups are consistent.The proposed model of this study can accurately and reliably estimate lower limb joint movements, and the effectiveness will also be radiated to the patient group. This revealed that our models also have certain advantages in the recognition of motor intentions in patients with relevant movement disorders. Future work from this study can be focused on sports rehabilitation in the clinical field by achieving more flexible and precise movement control of the lower limb assisted equipment to help the rehabilitation of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
y1628521397完成签到 ,获得积分10
刚刚
戴昕东发布了新的文献求助10
1秒前
1秒前
sail发布了新的文献求助10
1秒前
顺顺顺顺完成签到,获得积分10
1秒前
科研通AI6应助Linda采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
123发布了新的文献求助10
1秒前
小立发布了新的文献求助10
2秒前
赘婿应助臻灏采纳,获得10
2秒前
2秒前
大鹅完成签到,获得积分10
2秒前
单薄的钢笔完成签到,获得积分10
2秒前
3秒前
3秒前
happy完成签到,获得积分10
3秒前
3秒前
3秒前
董晏殊完成签到,获得积分10
4秒前
Peetvader完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
wenge发布了新的文献求助10
5秒前
充电宝应助aaaaaa采纳,获得10
5秒前
小胖熊完成签到,获得积分10
5秒前
1111发布了新的文献求助10
5秒前
无花果应助RR采纳,获得10
6秒前
6秒前
7秒前
vince发布了新的文献求助10
7秒前
7秒前
一方通行发布了新的文献求助10
7秒前
升升升呀发布了新的文献求助30
7秒前
想啊想发布了新的文献求助10
8秒前
细心的雪晴完成签到,获得积分20
8秒前
小二郎应助王王碎冰冰采纳,获得10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688