Automatic classification of microplastics and natural organic matter mixtures using a deep learning model

人工智能 预处理器 天然有机质 模式识别(心理学) 拉曼光谱 卷积神经网络 计算机科学 微塑料 深度学习 人工神经网络 鉴定(生物学) 生物系统 光谱特征 有机质 机器学习 化学 遥感 环境化学 物理 地质学 光学 植物 有机化学 生物
作者
Seunghyeon Lee,Heewon Jeong,Seok Min Hong,Daeun Yun,Jiye Lee,Eun‐Ju Kim,Kyung Hwa Cho
出处
期刊:Water Research [Elsevier]
卷期号:246: 120710-120710 被引量:33
标识
DOI:10.1016/j.watres.2023.120710
摘要

Several preprocessing procedures are required for the classification of microplastics (MPs) in aquatic systems using spectroscopic analysis. Procedures such as oxidation, which are employed to remove natural organic matter (NOM) from MPs, can be time- and cost-intensive. Furthermore, the identification process is prone to errors due to the subjective judgment of the operators. Therefore, in this study, deep learning (DL) was applied to improve the classification accuracies for mixtures of microplastic and natural organic matter (MP-NOM). A convolutional neural network (CNN)-based DL model with a spatial attention mechanism was adopted to classify substances from their Raman spectra. Subsequently, the classification results were compared with those obtained using conventional Raman spectral library software to evaluate the applicability of the model. Additionally, the crucial spectral band for training the DL model was investigated by applying gradient-weighted class activation mapping (Grad-CAM) as a post-processing technique. The model achieved an accuracy of 99.54%, which is much higher than the 31.44% achieved by the Raman spectral library. The Grad-CAM approach confirmed that the DL model can effectively identify MPs based on their visually prominent peaks in the Raman spectra. Furthermore, by tracking distinctive spectra without relying solely on visually prominent peaks, we can accurately classify MPs with less prominent peaks, which are characterized by a high standard deviation of intensity. These findings demonstrate the potential for automated and objective classification of MPs without the need for NOM preprocessing, indicating a promising direction for future research in microplastic classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kuhei发布了新的文献求助20
刚刚
2秒前
贾千兰发布了新的文献求助10
2秒前
2秒前
棍子发布了新的文献求助10
2秒前
打打应助cmuwinni采纳,获得10
3秒前
3秒前
Ultraman发布了新的文献求助10
3秒前
Hello应助su采纳,获得10
3秒前
luxiuzhen发布了新的文献求助10
4秒前
KGZW完成签到,获得积分10
4秒前
PEACE发布了新的文献求助10
5秒前
τ涛完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
大龙哥886应助顺心的觅荷采纳,获得10
6秒前
Hu发布了新的文献求助10
7秒前
7秒前
mcl发布了新的文献求助10
7秒前
纤孜叶发布了新的文献求助10
7秒前
8秒前
Jerry完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
蓝色天空完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
wanci应助ANTI采纳,获得10
10秒前
10秒前
谭鑫瑶发布了新的文献求助10
10秒前
11秒前
Lorry发布了新的文献求助10
12秒前
Lorry发布了新的文献求助10
12秒前
Lorry发布了新的文献求助10
12秒前
12秒前
JamesYang发布了新的文献求助10
12秒前
段dwh完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095