Automatic classification of microplastics and natural organic matter mixtures using a deep learning model

人工智能 预处理器 天然有机质 模式识别(心理学) 拉曼光谱 卷积神经网络 计算机科学 微塑料 深度学习 人工神经网络 鉴定(生物学) 生物系统 光谱特征 有机质 机器学习 化学 遥感 环境化学 物理 地质学 光学 植物 有机化学 生物
作者
Seunghyeon Lee,Heewon Jeong,Seok Min Hong,Daeun Yun,Jiye Lee,Eun‐Ju Kim,Kyung Hwa Cho
出处
期刊:Water Research [Elsevier]
卷期号:246: 120710-120710 被引量:33
标识
DOI:10.1016/j.watres.2023.120710
摘要

Several preprocessing procedures are required for the classification of microplastics (MPs) in aquatic systems using spectroscopic analysis. Procedures such as oxidation, which are employed to remove natural organic matter (NOM) from MPs, can be time- and cost-intensive. Furthermore, the identification process is prone to errors due to the subjective judgment of the operators. Therefore, in this study, deep learning (DL) was applied to improve the classification accuracies for mixtures of microplastic and natural organic matter (MP-NOM). A convolutional neural network (CNN)-based DL model with a spatial attention mechanism was adopted to classify substances from their Raman spectra. Subsequently, the classification results were compared with those obtained using conventional Raman spectral library software to evaluate the applicability of the model. Additionally, the crucial spectral band for training the DL model was investigated by applying gradient-weighted class activation mapping (Grad-CAM) as a post-processing technique. The model achieved an accuracy of 99.54%, which is much higher than the 31.44% achieved by the Raman spectral library. The Grad-CAM approach confirmed that the DL model can effectively identify MPs based on their visually prominent peaks in the Raman spectra. Furthermore, by tracking distinctive spectra without relying solely on visually prominent peaks, we can accurately classify MPs with less prominent peaks, which are characterized by a high standard deviation of intensity. These findings demonstrate the potential for automated and objective classification of MPs without the need for NOM preprocessing, indicating a promising direction for future research in microplastic classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
普馨娴关注了科研通微信公众号
刚刚
刚刚
Julie发布了新的文献求助10
1秒前
小小发布了新的文献求助10
1秒前
2秒前
3秒前
shauiluo完成签到,获得积分10
4秒前
4秒前
无花果应助hdcf采纳,获得10
5秒前
共享精神应助玉玉采纳,获得10
6秒前
浮游应助goo采纳,获得10
6秒前
TZ发布了新的文献求助10
7秒前
李子衡发布了新的文献求助10
7秒前
丘比特应助小卡拉米采纳,获得10
7秒前
8秒前
思源应助大枣儿采纳,获得10
8秒前
10秒前
美丽老三完成签到,获得积分20
11秒前
开心元霜完成签到,获得积分10
11秒前
Ivy完成签到,获得积分10
11秒前
11秒前
12秒前
哦哦哦发布了新的文献求助10
13秒前
yongyou完成签到,获得积分20
14秒前
15秒前
美丽老三发布了新的文献求助10
15秒前
15秒前
hdcf发布了新的文献求助10
18秒前
玉玉发布了新的文献求助10
18秒前
aldehyde应助XYL采纳,获得10
18秒前
希望天下0贩的0应助惠胜采纳,获得10
19秒前
19秒前
倪倪发布了新的文献求助10
20秒前
21秒前
小郑发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
hanshiyi完成签到,获得积分10
25秒前
斯文败类应助yongyou采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320711
求助须知:如何正确求助?哪些是违规求助? 4462526
关于积分的说明 13887138
捐赠科研通 4353537
什么是DOI,文献DOI怎么找? 2391240
邀请新用户注册赠送积分活动 1384892
关于科研通互助平台的介绍 1354655