Automatic classification of microplastics and natural organic matter mixtures using a deep learning model

人工智能 预处理器 天然有机质 模式识别(心理学) 拉曼光谱 卷积神经网络 计算机科学 微塑料 深度学习 人工神经网络 鉴定(生物学) 生物系统 光谱特征 数据预处理 有机质 机器学习 化学 遥感 环境化学 物理 地质学 光学 植物 有机化学 生物
作者
Seunghyeon Lee,Hee-Won Jeong,Seok Min Hong,Daeun Yun,Jiye Lee,Eun‐Ju Kim,Kyung Hwa Cho
出处
期刊:Water Research [Elsevier]
卷期号:246: 120710-120710 被引量:11
标识
DOI:10.1016/j.watres.2023.120710
摘要

Several preprocessing procedures are required for the classification of microplastics (MPs) in aquatic systems using spectroscopic analysis. Procedures such as oxidation, which are employed to remove natural organic matter (NOM) from MPs, can be time- and cost-intensive. Furthermore, the identification process is prone to errors due to the subjective judgment of the operators. Therefore, in this study, deep learning (DL) was applied to improve the classification accuracies for mixtures of microplastic and natural organic matter (MP-NOM). A convolutional neural network (CNN)-based DL model with a spatial attention mechanism was adopted to classify substances from their Raman spectra. Subsequently, the classification results were compared with those obtained using conventional Raman spectral library software to evaluate the applicability of the model. Additionally, the crucial spectral band for training the DL model was investigated by applying gradient-weighted class activation mapping (Grad-CAM) as a post-processing technique. The model achieved an accuracy of 99.54%, which is much higher than the 31.44% achieved by the Raman spectral library. The Grad-CAM approach confirmed that the DL model can effectively identify MPs based on their visually prominent peaks in the Raman spectra. Furthermore, by tracking distinctive spectra without relying solely on visually prominent peaks, we can accurately classify MPs with less prominent peaks, which are characterized by a high standard deviation of intensity. These findings demonstrate the potential for automated and objective classification of MPs without the need for NOM preprocessing, indicating a promising direction for future research in microplastic classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亨利公爵发布了新的文献求助10
刚刚
生动的书翠完成签到,获得积分20
刚刚
善学以致用应助feixixi采纳,获得10
刚刚
到江南散步完成签到,获得积分10
2秒前
Vancy发布了新的文献求助10
4秒前
不安的蜗牛完成签到,获得积分20
4秒前
善学以致用应助大老虎采纳,获得10
6秒前
6秒前
cappuccino完成签到,获得积分10
7秒前
8秒前
Sunana完成签到,获得积分10
9秒前
10秒前
亨利公爵完成签到,获得积分20
12秒前
大陆完成签到,获得积分10
13秒前
Sunana发布了新的文献求助10
14秒前
14秒前
杨白秋完成签到,获得积分10
16秒前
Oct发布了新的文献求助30
16秒前
17秒前
共享精神应助复杂曼梅采纳,获得10
17秒前
qqqq应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得30
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
jiysh完成签到,获得积分0
18秒前
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
Singularity应助科研通管家采纳,获得20
18秒前
18秒前
18秒前
所所应助酷酷问筠采纳,获得10
18秒前
开放的芷云完成签到,获得积分10
19秒前
owoo应助咸鱼王采纳,获得10
19秒前
BIG-JUICE发布了新的文献求助10
20秒前
芋圆不圆发布了新的文献求助10
22秒前
123发布了新的文献求助10
23秒前
毛豆应助alyssa采纳,获得10
23秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416639
求助须知:如何正确求助?哪些是违规求助? 3018421
关于积分的说明 8884216
捐赠科研通 2705746
什么是DOI,文献DOI怎么找? 1483866
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 681004