亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic classification of microplastics and natural organic matter mixtures using a deep learning model

人工智能 预处理器 天然有机质 模式识别(心理学) 拉曼光谱 卷积神经网络 计算机科学 微塑料 深度学习 人工神经网络 鉴定(生物学) 生物系统 光谱特征 有机质 机器学习 化学 遥感 环境化学 物理 地质学 光学 植物 有机化学 生物
作者
Seunghyeon Lee,Heewon Jeong,Seok Min Hong,Daeun Yun,Jiye Lee,Eun‐Ju Kim,Kyung Hwa Cho
出处
期刊:Water Research [Elsevier BV]
卷期号:246: 120710-120710 被引量:22
标识
DOI:10.1016/j.watres.2023.120710
摘要

Several preprocessing procedures are required for the classification of microplastics (MPs) in aquatic systems using spectroscopic analysis. Procedures such as oxidation, which are employed to remove natural organic matter (NOM) from MPs, can be time- and cost-intensive. Furthermore, the identification process is prone to errors due to the subjective judgment of the operators. Therefore, in this study, deep learning (DL) was applied to improve the classification accuracies for mixtures of microplastic and natural organic matter (MP-NOM). A convolutional neural network (CNN)-based DL model with a spatial attention mechanism was adopted to classify substances from their Raman spectra. Subsequently, the classification results were compared with those obtained using conventional Raman spectral library software to evaluate the applicability of the model. Additionally, the crucial spectral band for training the DL model was investigated by applying gradient-weighted class activation mapping (Grad-CAM) as a post-processing technique. The model achieved an accuracy of 99.54%, which is much higher than the 31.44% achieved by the Raman spectral library. The Grad-CAM approach confirmed that the DL model can effectively identify MPs based on their visually prominent peaks in the Raman spectra. Furthermore, by tracking distinctive spectra without relying solely on visually prominent peaks, we can accurately classify MPs with less prominent peaks, which are characterized by a high standard deviation of intensity. These findings demonstrate the potential for automated and objective classification of MPs without the need for NOM preprocessing, indicating a promising direction for future research in microplastic classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助无聊又夏采纳,获得10
3秒前
22秒前
24秒前
CipherSage应助璇别采纳,获得10
27秒前
无聊又夏发布了新的文献求助10
27秒前
45秒前
Dec发布了新的文献求助10
49秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
YifanWang应助科研通管家采纳,获得20
59秒前
科研通AI5应助guoze采纳,获得10
1分钟前
无聊又夏完成签到,获得积分10
1分钟前
lovelife完成签到,获得积分10
1分钟前
深情安青应助guoze采纳,获得30
1分钟前
默默白桃完成签到 ,获得积分10
1分钟前
Raunio完成签到,获得积分10
1分钟前
华仔应助不攻自破采纳,获得10
2分钟前
sino-ft完成签到,获得积分10
2分钟前
2分钟前
不攻自破发布了新的文献求助10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
CodeCraft应助乐乐洛洛采纳,获得10
3分钟前
科研通AI5应助不攻自破采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
不攻自破发布了新的文献求助10
3分钟前
乐乐洛洛发布了新的文献求助10
3分钟前
科研通AI5应助彼岸花开采纳,获得50
3分钟前
乐乐洛洛完成签到,获得积分10
3分钟前
yangjoy完成签到 ,获得积分10
3分钟前
3分钟前
zombleq完成签到,获得积分10
3分钟前
zombleq发布了新的文献求助10
4分钟前
4分钟前
彼岸花开发布了新的文献求助50
4分钟前
孤独君浩完成签到 ,获得积分10
4分钟前
零度发布了新的文献求助10
4分钟前
YifanWang应助科研通管家采纳,获得30
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965704
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155653
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214