酶动力学
奥克森
代谢物
化学
杀虫剂
戒毒(替代医学)
水解
突变体
生物化学
羧酸酯酶
对氧磷
酶
生物
乙酰胆碱酯酶
活动站点
医学
替代医学
病理
神经科学
基因
农学
作者
Laura Job,Anja Köhler,Mauricio Testanera,Benjamin Escher,Franz Worek,Arne Skerra
出处
期刊:Protein Engineering Design & Selection
[Oxford University Press]
日期:2023-01-01
卷期号:36
被引量:1
标识
DOI:10.1093/protein/gzad020
摘要
Abstract Organophosphorus (OP) pesticides are still widely applied but pose a severe toxicological threat if misused. For in vivo detoxification, the application of hydrolytic enzymes potentially offers a promising treatment. A well-studied example is the phosphotriesterase of Brevundimonas diminuta (BdPTE). Whereas wild-type BdPTE can hydrolyse pesticides like paraoxon, chlorpyrifos-oxon and mevinphos with high catalytic efficiencies, kcat/KM >2 × 107 M−1 min−1, degradation of malaoxon is unsatisfactory (kcat/KM ≈ 1 × 104 M−1 min−1). Here, we report the rational engineering of BdPTE mutants with improved properties and their efficient production in Escherichia coli. As result, the mutant BdPTE(VRNVVLARY) exhibits 37-fold faster malaoxon hydrolysis (kcat/KM = 4.6 × 105 M−1 min−1), together with enhanced expression yield, improved thermal stability and reduced susceptibility to oxidation. Therefore, this BdPTE mutant constitutes a powerful candidate to develop a biocatalytic antidote for the detoxification of this common pesticide metabolite as well as related OP compounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI