材料科学
四方晶系
温度系数
陶瓷
白钨矿
微观结构
拉曼光谱
相变
分析化学(期刊)
电介质
扫描电子显微镜
矿物学
结晶学
晶体结构
凝聚态物理
光学
复合材料
光电子学
化学
冶金
物理
色谱法
钨
作者
Deqin Chen,Xiaowei Zhu,Siyu Xiong,Guobin Zhu,Laijun Liu,Jibran Khaliq,Chunchun Li
标识
DOI:10.1021/acsami.3c12015
摘要
In this study, (La0.2Nd0.2Sm0.2Ho0.2Y0.2)(Nb1-xVx)O4 (0.1 ≤ x ≤ 0.4) ceramics were prepared using a high-entropy strategy via the solid-phase method. The crystal structure, microstructure, vibration modes, and phase transition were studied by X-ray diffraction, scanning electron microscopy/transmission electron microscopy (SEM/TEM), and Raman spectroscopy techniques. The phase of ceramics was confirmed to be a monoclinic fergusonite in the range of x ≤ 0.28, a tetragonal scheelite was in the range of 0.3 ≤ x ≤ 0.32, a complex phase of tetragonal scheelite, and zircon was observed in the ceramics when x ≥ 0.35. A zircon phase was also detected by TEM at x = 0.4. The ceramic at x = 0.25 exhibited outstanding temperature stabilization with εr = 18.06, Q × f = 56,300 GHz, and τf = -1.52 ppm/°C, while the x = 0.2 ceramic exhibited a low dielectric loss with εr = 18.14, Q × f = 65,200 GHz, and τf = -7.96 ppm/°C. Moreover, the permittivity, quality factor, and the temperature coefficient of resonance frequency were related to the polarizability, packing fraction, density, and the temperature coefficient of permittivity caused by phase transition. This is an effective method to regulate near-zero τf by the synergism of the high-entropy strategy and substituting Nb with V in LnNbO4 ceramics.
科研通智能强力驱动
Strongly Powered by AbleSci AI