化学
催化作用
贵金属
选择性
电化学
磷化物
电流密度
铜
电极
化学工程
纳米技术
有机化学
材料科学
物理化学
物理
量子力学
工程类
作者
Sanyin Yang,Jun Bu,Rui Bai,Jin Lin,Siying An,Yafei Wu,Ying Guo,Jie Gao,Jian Zhang
标识
DOI:10.1002/cjoc.202300298
摘要
Comprehensive Summary Alkenols are important intermediates for the industrial manufacture of various commodities and fine chemicals. At present, alkenols are produced via thermocatalytic semihydrogenation of corresponding alkynols using precious metal Pd‐based catalysts in pressurized hydrogen atmosphere. In this work, we highlight an efficient electrocatalytic strategy for selectively reducing alkynols to alkenols under ambient conditions. Using 2‐methyl‐3‐butyn‐2‐ol as a model alkynol, Cu 3 P nanoarrays anchored on Cu foam remarkably deliver an industrial‐level partial current density of 0.79 A·cm –2 and a specific selectivity of 98% for 2‐methyl‐3‐buten‐2‐ol in acidic solution. Over a 40‐runs stability test, Cu 3 P nanoarrays maintain 90% alkynol conversion and 90% alkenol selectivity. Even in a large two‐electrode flow electrolyser, the single‐pass alkynol conversion and alkenol selectivity of Cu 3 P nanoarrays exceed 90%. Moreover, this selective electrocatalytic hydrogenation approach is broadly feasible for the production of various water‐soluble alkenols. Electrochemical analyses, theoretical simulation and electrochemical in‐situ infrared investigations together reveal that exothermic alkynol hydrogenation, facile alkenol desorption and formation of active H on Cu 3 P surfaces account for the excellent electrocatalytic performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI