Health systems efficiency in China and ASEAN, 2015–2020: a DEA-Tobit and SFA analysis application

托比模型 数据包络分析 全要素生产率 索引(排版) 马尔奎斯特指数 效率低下 随机前沿分析 国内生产总值 中国 生产力 经济 医学 经济增长 计量经济学 地理 统计 宏观经济学 数学 考古 生产(经济) 万维网 计算机科学 微观经济学
作者
Jing Kang,Rong Peng,Jun Feng,Junyuan Wei,Li Zhen,Huang Fen,Yu Fu,Xiaorong Su,Yu-Jung Chen,Xianjing Qin,Qiming Feng
出处
期刊:BMJ Open [BMJ]
卷期号:13 (9): e075030-e075030 被引量:1
标识
DOI:10.1136/bmjopen-2023-075030
摘要

Objective To evaluate the health systems efficiency in China and Association of Southeast Asian Nations (ASEAN) countries from 2015 to 2020. Design Health efficiency analysis using data envelopment analysis (DEA) and stochastic frontier approach analysis. Setting Health systems in China and ASEAN countries. Methods DEA-Malmquist model and SFA model were used to analyse the health system efficiency among China and ASEAN countries, and the Tobit regression model was employed to analyse the factors affecting the efficiency of health system among these countries. Results In 2020, the average technical efficiency, pure technical efficiency and scale efficiency of China and 10 ASEAN countries’ health systems were 0.700, 1 and 0.701, respectively. The average total factor productivity (TFP) index of the health systems in 11 countries from 2015 to 2020 was 0.962, with a decrease of 1.4%, among which the average technical efficiency index was 1.016, and the average technical progress efficiency index was 0.947. In the past 6 years, the TFP index of the health system in Malaysia was higher than 1, while the TFP index of other countries was lower than 1. The cost efficiency among China and ASEAN countries was relatively high and stable. The per capita gross domestic product (current US$) and the urban population have significant effects on the efficiency of health systems. Conclusions Health systems inefficiency is existing in China and the majority ASEAN countries. However, the lower/middle-income countries outperformed high-income countries. Technical efficiency is the key to improve the TFP of health systems. It is suggested that China and ASEAN countries should enhance scale efficiency, accelerate technological progress and strengthen regional health cooperation according to their respective situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卫尔摩斯发布了新的文献求助10
刚刚
BINBIN完成签到 ,获得积分10
刚刚
hfgeyt完成签到,获得积分10
1秒前
sakurai应助背后的诺言采纳,获得10
1秒前
湘华发布了新的文献求助10
2秒前
Jenny应助lan采纳,获得10
2秒前
单薄的飞松完成签到 ,获得积分10
2秒前
醒醒发布了新的文献求助10
2秒前
3秒前
恨安完成签到,获得积分10
3秒前
jijahui发布了新的文献求助30
3秒前
南瓜咸杏发布了新的文献求助30
3秒前
4秒前
调研昵称发布了新的文献求助50
4秒前
5秒前
白白不读书完成签到 ,获得积分10
5秒前
6秒前
AIA7发布了新的文献求助10
6秒前
6秒前
6秒前
夏橪完成签到,获得积分10
6秒前
6秒前
dddddd发布了新的文献求助10
7秒前
什么也难不倒我完成签到 ,获得积分10
7秒前
7秒前
立马毕业发布了新的文献求助10
7秒前
喜悦的尔阳完成签到,获得积分10
8秒前
8秒前
现实的白开水完成签到,获得积分10
8秒前
8秒前
SHDeathlock发布了新的文献求助50
8秒前
lunan发布了新的文献求助10
9秒前
9秒前
酷炫过客完成签到,获得积分20
9秒前
10秒前
11秒前
11秒前
华仔应助xiaoziyi666采纳,获得10
11秒前
渝州人完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762