Machine learning-enabled rational design of organic flame retardants for enhanced fire safety of epoxy resin composites

环氧树脂 极限氧指数 材料科学 阻燃剂 复合材料 燃烧 点火系统 限制 消防安全 计算机科学 工艺工程 机械工程 数学 化学 工程类 有机化学 烧焦 航空航天工程 统计
作者
Zhongwei Chen,Boran Yang,Nannan Song,Yufan Liu,Rong Feng,Xida Zhang,Tingting Chen,Qingwu Zhang,Juncheng Jiang,Tao Chen,Yuan Yu,Lian X. Liu
出处
期刊:Composites Communications [Elsevier BV]
卷期号:44: 101756-101756 被引量:9
标识
DOI:10.1016/j.coco.2023.101756
摘要

This study proposed an approach utilizing machine learning (ML) to accelerate the design of organic flame retardants (FRs) for epoxy resins (EPs), avoiding the limitations of traditional trial-and-error methods. For the first time, ML models have been established and considered for five pivotal parameters: limiting oxygen index (LOI), peak heat release rate (PHRR), total heat release (THR), time to ignition (TTI), and vertical combustion test (UL-94) level. These models were employed to consider and assess the significance and relevance of FRs structure and addition amount to the essential flame retardancy of EPs. The ML models showed excellent performance, with the coefficient of determination scores around 0.8 for the test set. Utilizing key structural insights gleaned from these ML models, a FR referred to as BDOPO was employed here to experimentally verify the changes in the properties of EP composites loaded with different amounts of BDOPO (EP/BDOPO), and the results showed that, except for the TTI, the ML models could accurately predict all the other properties of EP/BDOPO. The study also elucidated the flame retardancy mechanism of BDOPO in EP. This approach provides an effective method for designing organic FRs for high-performance EP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anyelengxin完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
nylon发布了新的文献求助10
1秒前
1秒前
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
鱼鱼发布了新的文献求助10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
yyds应助科研通管家采纳,获得80
2秒前
2秒前
Hello应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得20
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
卡卡西应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
烟花应助科研通管家采纳,获得10
3秒前
3秒前
卡卡西应助科研通管家采纳,获得10
4秒前
1230发布了新的文献求助10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
逸之狐应助科研通管家采纳,获得20
4秒前
打打应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
lulu完成签到,获得积分10
4秒前
5秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958850
求助须知:如何正确求助?哪些是违规求助? 3505102
关于积分的说明 11122496
捐赠科研通 3236558
什么是DOI,文献DOI怎么找? 1788899
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802794