控制理论(社会学)
人工神经网络
非线性系统
控制器(灌溉)
观察员(物理)
计算机科学
自适应控制
扰动(地质)
财产(哲学)
集合(抽象数据类型)
理想(伦理)
数学
控制(管理)
人工智能
古生物学
哲学
物理
认识论
量子力学
农学
生物
程序设计语言
标识
DOI:10.1177/00202940221106123
摘要
This paper presents an adaptive neural network controller based on a disturbance observer to compensate the disturbance caused by neural network approximation for a class of unknown nonlinear systems. The proposed adaptive neural network control with an updated parameters mechanism is not subject to the restriction of compact set assumption for satisfying the universal approximation property. The neural network approximation error can be compensated online through the proposed disturbance observer. The proposed method eliminates the need to obtain an exact system model before applying the ideal controller. The effectiveness of the proposed method is validated by numerical simulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI