Socially situated artificial intelligence enables learning from human interaction

位于 计算机科学 人工智能 社会学习 软件部署 情境学习 强化学习 任务(项目管理) 社会智力 人机交互 心理学 知识管理 社会心理学 教育学 管理 经济 操作系统
作者
Ranjay Krishna,Donsuk Lee,Li Fei-Fei,Michael Bernstein
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:119 (39)
标识
DOI:10.1073/pnas.2115730119
摘要

Regardless of how much data artificial intelligence agents have available, agents will inevitably encounter previously unseen situations in real-world deployments. Reacting to novel situations by acquiring new information from other people—socially situated learning—is a core faculty of human development. Unfortunately, socially situated learning remains an open challenge for artificial intelligence agents because they must learn how to interact with people to seek out the information that they lack. In this article, we formalize the task of socially situated artificial intelligence—agents that seek out new information through social interactions with people—as a reinforcement learning problem where the agent learns to identify meaningful and informative questions via rewards observed through social interaction. We manifest our framework as an interactive agent that learns how to ask natural language questions about photos as it broadens its visual intelligence on a large photo-sharing social network. Unlike active-learning methods, which implicitly assume that humans are oracles willing to answer any question, our agent adapts its behavior based on observed norms of which questions people are or are not interested to answer. Through an 8-mo deployment where our agent interacted with 236,000 social media users, our agent improved its performance at recognizing new visual information by 112%. A controlled field experiment confirmed that our agent outperformed an active-learning baseline by 25.6%. This work advances opportunities for continuously improving artificial intelligence (AI) agents that better respect norms in open social environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱听歌半山完成签到,获得积分10
1秒前
2秒前
Kevin完成签到 ,获得积分10
2秒前
阿毛ya发布了新的文献求助10
3秒前
3秒前
3秒前
脑洞疼应助爱听歌半山采纳,获得30
4秒前
4秒前
4秒前
4秒前
4秒前
wanci应助FFF采纳,获得10
4秒前
lujiajia发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
LSY-henu发布了新的文献求助10
5秒前
5秒前
小巧吐司完成签到,获得积分20
5秒前
6秒前
6秒前
未来可期完成签到,获得积分20
6秒前
124332发布了新的文献求助10
7秒前
124332发布了新的文献求助10
7秒前
124332发布了新的文献求助10
7秒前
124332发布了新的文献求助10
7秒前
124332发布了新的文献求助10
7秒前
124332发布了新的文献求助10
7秒前
124332发布了新的文献求助30
8秒前
124332发布了新的文献求助10
8秒前
124332发布了新的文献求助10
8秒前
124332发布了新的文献求助10
8秒前
124332发布了新的文献求助10
8秒前
满意富发布了新的文献求助10
8秒前
124332发布了新的文献求助10
9秒前
124332发布了新的文献求助10
9秒前
124332发布了新的文献求助10
9秒前
124332发布了新的文献求助10
9秒前
124332发布了新的文献求助10
9秒前
124332发布了新的文献求助10
9秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302046
求助须知:如何正确求助?哪些是违规求助? 2936566
关于积分的说明 8478154
捐赠科研通 2610354
什么是DOI,文献DOI怎么找? 1425128
科研通“疑难数据库(出版商)”最低求助积分说明 662289
邀请新用户注册赠送积分活动 646465