Artificial Neural Network for Direction‐of‐Arrival Estimation and Secure Wireless Communications Via Space‐Time‐Coding Digital Metasurfaces

编码(社会科学) 人工神经网络 无线 到达方向 电子工程 计算机科学 雷达 实时计算 人工智能 电信 工程类 数学 天线(收音机) 统计
作者
Xiao Qing Chen,Lei Zhang,Shuo Liu,Tie Jun Cui
出处
期刊:Advanced Optical Materials [Wiley]
卷期号:10 (23) 被引量:12
标识
DOI:10.1002/adom.202201900
摘要

Abstract Direction of arrival (DOA) estimation has long been an attractive research topic in various industries and is a vital technique for intelligent wireless systems. Conventional DOA estimation methods based on array antennas suffer from high latency in signal postprocessing, leading to complex hardware architecture, high cost, and low efficiency. Recently, some metasurface‐based methods have emerged as alternatives, but they have limited applications due to the stringent requirements for equipment and environment. Here, an efficient method is proposed to lift these limitations by combining artificial neural networks (ANNs) with space‐time‐coding (STC) digital metasurfaces. The ANN‐enabled DOA estimation achieves high accuracy by simply analyzing the spatial‐spectral characteristics of the STC modulation, which utilizes only harmonic amplitudes without phases, and thus features a much‐simplified hardware architecture. The proposed method does not require large computational resources and is more robust in practical applications. For validation, several ANN models trained with simulated and measured data are presented in a microwave regime. Moreover, a potential application of this method is demonstrated in secure communications. The proposed theory and metasurface provide on‐demand selections of ANN models for reaching optimal DOA estimations in different scenarios, which holds promising applications in wireless sensing, communication, radar, and other self‐adaptive information systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钟是一梦发布了新的文献求助10
1秒前
Lucas应助Light采纳,获得10
2秒前
2秒前
2秒前
李健的粉丝团团长应助Ll采纳,获得10
2秒前
2秒前
JQKing完成签到,获得积分10
3秒前
3秒前
zs完成签到 ,获得积分10
3秒前
3秒前
11完成签到,获得积分20
3秒前
一定会更好的完成签到,获得积分10
4秒前
Pangsj发布了新的文献求助10
4秒前
姆姆完成签到,获得积分10
4秒前
领导范儿应助落晨采纳,获得10
4秒前
5秒前
善良的安卉完成签到,获得积分10
5秒前
淡定吃吃发布了新的文献求助10
6秒前
yyf关闭了yyf文献求助
6秒前
7秒前
kokodayour完成签到,获得积分10
7秒前
Quin完成签到,获得积分10
7秒前
7秒前
冷艳乐松完成签到,获得积分10
8秒前
8秒前
8秒前
诸葛雪兰完成签到,获得积分10
9秒前
洛尚完成签到,获得积分10
9秒前
czq完成签到,获得积分10
9秒前
VVhahaha完成签到,获得积分10
10秒前
limof发布了新的文献求助10
10秒前
11秒前
小葡萄完成签到 ,获得积分10
11秒前
12秒前
wu发布了新的文献求助30
12秒前
13秒前
毕业就好发布了新的文献求助10
13秒前
13秒前
13秒前
冷艳乐松发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740