材料科学
交换电流密度
过电位
异质结
催化作用
石墨烯
氮化物
氧化物
化学工程
镍
氢
动力学
离子交换
密度泛函理论
无机化学
合金
纳米技术
离子
物理化学
塔菲尔方程
计算化学
冶金
光电子学
化学
电极
生物化学
物理
有机化学
图层(电子)
量子力学
工程类
电化学
作者
Churong Huang,Min Feng,Yang Peng,Bin Zhang,Jingle Huang,Xin Yue,Shaoming Huang
标识
DOI:10.1002/adfm.202300593
摘要
Abstract The inferior activity of hydrogen oxidation reaction (HOR) in alkali severely hampers the deployment of Ni catalysts in the promising anion exchange membrane fuel cells (AEMFCs), due to the unbalanced binding energies of hydrogen (HBE) and hydroxyl (OHBE) species. Ni‐Mo alloy and nickel nitride have been proven to improve the Ni‐based activities of HOR but they still can be further enhanced. Because it sacrifices the HBE for enlarging OHBE. Herein, it is reported that the activity can be further improved by constructing heterostructure between Ni nanoparticles (NPs) and nitride of Ni‐Mo alloy (Ni 0.2 Mo 0.8 N) by an in situ synthetic strategy. The in situ prepared reduced graphene oxide (rGO) supported heterostructure (Ni/Ni 0.2 Mo 0.8 N/rGO) possesses the state‐of‐the‐art activity (overpotential of 100 mV to achieve 2.9 mA cm −2 ), faster kinetics (kinetics current density of 11.20 mA cm −2 and exchange current density of 2.74 mA cm −2 ), and ultrahigh durability (maintaining the current densities for over 40 h or 10000 cycles). Detailed characterizations together with density functional theory simulations reveal that the tuned d‐band electronic structures optimize and balance the HBE and OHBE, facilitating the HOR process on the as‐fabricated heterostructured catalyst.
科研通智能强力驱动
Strongly Powered by AbleSci AI