多倍体
生物
倍性
基因组
非生物胁迫
杂种优势
非生物成分
染色体
植物进化
林木育种
基因组大小
遗传学
进化生物学
基因
植物
混合的
木本植物
生态学
作者
Song Chen,Yue Yu,Xiaogang Wang,Sui Wang,Tianjiao Zhang,Yan Zhou,Ruihan He,Nan Meng,Yiran Wang,Wenxuan Liu,Zhijie Liu,Jinwen Liu,Qiwen Guo,Haijiao Huang,Ronald R. Sederoff,Guohua Wang,Guanzheng Qu,Su Chen
标识
DOI:10.1111/1755-0998.13770
摘要
Abstract Many recent studies have provided significant insights into polyploid breeding, but limited research has been carried out on trees. The genomic information needed to understand growth and response to abiotic stress in polyploidy trees is largely unknown, but has become critical due to the threats to forests imposed by climate change. Populus alba ‘ Berolinensis ,’ also known “Yinzhong poplar,” is a triploid poplar from northeast China. This hybrid triploid poplar is widely used as a landscape ornamental and in urban forestry owing to its adaptation to adverse environments and faster growth than its parental diploid. It is an artificially synthesized male allotriploid hybrid, with three haploid genomes of P. alba ‘ Berolinensis ’ originating from different poplar species, so it is attractive for studying polyploidy genomic mechanisms in heterosis. In this study, we focused on the allelic genomic interactions in P. alba ‘ Berolinensis ,’ and generated a high‐quality chromosome‐level genome assembly consisting of 19 allelic chromosomes. Its three haploid chromosome sets are polymorphic with an average of 25.73 nucleotide polymorphism sites per kilobase. We found that some stress‐related genes such as RD22 and LEA7 exhibited sequence differences between different haploid genomes. The genome assembly has been deposited in our polyploid genome online analysis website TreeGenomes ( https://www.treegenomes.com ). These polyploid genome‐related resources will provide a critical foundation for the molecular breeding of P. alba ‘ Berolinensis ’ and help us uncover the allopolyploidization effects of heterosis and abiotic stress resistance and traits of polyploidy species in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI