Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning

人工智能 计算机科学 卷积神经网络 深度学习 模式识别(心理学) 学习迁移 乳腺癌 上下文图像分类 组织病理学 机器学习 癌症 病理 图像(数学) 医学 内科学
作者
Mahati Munikoti Srikantamurthy,V. P. Subramanyam Rallabandi,Dawood B. Dudekula,Sathishkumar Natarajan,Junhyung Park
出处
期刊:BMC Medical Imaging [BioMed Central]
卷期号:23 (1) 被引量:42
标识
DOI:10.1186/s12880-023-00964-0
摘要

Grading of cancer histopathology slides requires more pathologists and expert clinicians as well as it is time consuming to look manually into whole-slide images. Hence, an automated classification of histopathological breast cancer sub-type is useful for clinical diagnosis and therapeutic responses. Recent deep learning methods for medical image analysis suggest the utility of automated radiologic imaging classification for relating disease characteristics or diagnosis and patient stratification.To develop a hybrid model using the convolutional neural network (CNN) and the long short-term memory recurrent neural network (LSTM RNN) to classify four benign and four malignant breast cancer subtypes. The proposed CNN-LSTM leveraging on ImageNet uses a transfer learning approach in classifying and predicting four subtypes of each. The proposed model was evaluated on the BreakHis dataset comprises 2480 benign and 5429 malignant cancer images acquired at magnifications of 40×, 100×, 200× and 400×.The proposed hybrid CNN-LSTM model was compared with the existing CNN models used for breast histopathological image classification such as VGG-16, ResNet50, and Inception models. All the models were built using three different optimizers such as adaptive moment estimator (Adam), root mean square propagation (RMSProp), and stochastic gradient descent (SGD) optimizers by varying numbers of epochs. From the results, we noticed that the Adam optimizer was the best optimizer with maximum accuracy and minimum model loss for both the training and validation sets. The proposed hybrid CNN-LSTM model showed the highest overall accuracy of 99% for binary classification of benign and malignant cancer, and, whereas, 92.5% for multi-class classifier of benign and malignant cancer subtypes, respectively.To conclude, the proposed transfer learning approach outperformed the state-of-the-art machine and deep learning models in classifying benign and malignant cancer subtypes. The proposed method is feasible in classification of other cancers as well as diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助欢喜念双采纳,获得10
刚刚
Jasper应助YJJ采纳,获得10
刚刚
美梦成真发布了新的文献求助10
刚刚
记录者完成签到,获得积分10
刚刚
1秒前
QXR发布了新的文献求助50
1秒前
麟钰完成签到,获得积分10
1秒前
多情蓝发布了新的文献求助10
1秒前
1111完成签到,获得积分10
1秒前
1秒前
隐形曼青应助liumx采纳,获得30
2秒前
2秒前
3秒前
董石美发布了新的文献求助10
4秒前
春锅锅完成签到,获得积分10
4秒前
Lu完成签到,获得积分10
4秒前
5秒前
Liy给Liy的求助进行了留言
5秒前
5秒前
Li完成签到,获得积分10
6秒前
投必快业必毕完成签到,获得积分10
7秒前
hehehe完成签到,获得积分10
7秒前
桑葚发布了新的文献求助10
7秒前
i4real完成签到,获得积分20
7秒前
革微桂完成签到 ,获得积分10
7秒前
栀子完成签到,获得积分10
7秒前
灰灰12138完成签到,获得积分10
8秒前
啊啊啊发布了新的文献求助10
8秒前
woobinhua完成签到,获得积分10
8秒前
9秒前
HCLO完成签到,获得积分10
10秒前
努力读文献的小刘同学完成签到,获得积分10
10秒前
韦老虎发布了新的文献求助10
10秒前
董石美完成签到,获得积分20
10秒前
淡定静白完成签到,获得积分10
11秒前
润物无声完成签到,获得积分10
11秒前
duotianzhiyi完成签到,获得积分10
12秒前
请勿继续完成签到,获得积分10
12秒前
Ava应助李李李采纳,获得10
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729529
求助须知:如何正确求助?哪些是违规求助? 3274563
关于积分的说明 9986780
捐赠科研通 2989812
什么是DOI,文献DOI怎么找? 1640767
邀请新用户注册赠送积分活动 779348
科研通“疑难数据库(出版商)”最低求助积分说明 748196