RESEAT: Recurrent Self-Attention Network for Multi-Regional Influenza Forecasting

计算机科学 循环神经网络 人工智能 超参数 机器学习 深度学习 人工神经网络 任务(项目管理) 经济 管理
作者
Jaeuk Moon,Seungwon Jung,Sungwoo Park,Eenjun Hwang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (5): 2585-2596 被引量:4
标识
DOI:10.1109/jbhi.2023.3247687
摘要

Early forecasting of influenza is an important task for public health to reduce losses due to influenza. Various deep learning-based models for multi-regional influenza forecasting have been proposed to forecast future influenza occurrences in multiple regions. While they only use historical data for forecasting, temporal and regional patterns need to be jointly considered for better accuracy. Basic deep learning models such as recurrent neural networks and graph neural networks have limited ability to model both patterns together. A more recent approach uses an attention mechanism or its variant, self-attention. Although these mechanisms can model regional interrelationships, in state-of-the-art models, they consider accumulated regional interrelationships based on attention values that are calculated only once for all of the input data. This limitation makes it difficult to effectively model the regional interrelationships that change dynamically during that period. Therefore, in this article, we propose a recurrent self-attention network (RESEAT) for various multi-regional forecasting tasks such as influenza and electrical load forecasting. The model can learn regional interrelationships over the entire period of the input data using self-attention, and it recurrently connects the attention weights using message passing. We demonstrate through extensive experiments that the proposed model outperforms other state-of-the-art forecasting models in terms of the forecasting accuracy for influenza and COVID-19. We also describe how to visualize regional interrelationships and analyze the sensitivity of hyperparameters to forecasting accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7788999完成签到,获得积分10
刚刚
刚刚
勤恳的夏之完成签到,获得积分20
1秒前
1秒前
lone623应助赵文若采纳,获得10
2秒前
lone623应助赵文若采纳,获得10
2秒前
鹿茸与共发布了新的文献求助10
3秒前
万能图书馆应助AKK采纳,获得10
4秒前
西子阳发布了新的文献求助10
4秒前
5秒前
无误发布了新的文献求助10
5秒前
酷波er应助why采纳,获得10
5秒前
张文懿发布了新的文献求助10
5秒前
西子阳发布了新的文献求助10
6秒前
西子阳发布了新的文献求助10
6秒前
西子阳发布了新的文献求助10
6秒前
西子阳发布了新的文献求助10
6秒前
西子阳发布了新的文献求助10
6秒前
西子阳发布了新的文献求助10
6秒前
尽如给尽如的求助进行了留言
6秒前
李健的小迷弟应助王富贵采纳,获得30
6秒前
风趣的凝雁完成签到,获得积分10
6秒前
凶狠的山晴完成签到,获得积分20
7秒前
zjz1发布了新的文献求助10
8秒前
9秒前
abtx314发布了新的文献求助10
9秒前
Ava应助端庄的小蝴蝶采纳,获得10
10秒前
zhangyu应助积极以云采纳,获得10
10秒前
科研人发布了新的文献求助10
11秒前
绝情继父发布了新的文献求助10
12秒前
14秒前
QIMUSEN完成签到,获得积分20
15秒前
张文懿完成签到,获得积分10
15秒前
15秒前
岩墩墩发布了新的文献求助10
15秒前
柴子完成签到,获得积分10
15秒前
脑洞疼应助大咸鱼采纳,获得100
16秒前
栗子完成签到,获得积分10
16秒前
zhangyu应助Jimmer采纳,获得10
17秒前
风中道罡完成签到,获得积分20
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014