An Intelligent Approach for Gas Reservoir Identification and Structural Evaluation by ANN and Viterbi Algorithm—A Case Study From the Xujiahe Formation, Western Sichuan Depression, China

计算机科学 人工神经网络 维特比算法 算法 超参数 鉴定(生物学) 数据挖掘 人工智能 植物 解码方法 生物
作者
Kai Zhang,Niantian Lin,Jiuqiang Yang,Dong Zhang,Yan Cui,Jin Zhu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:7
标识
DOI:10.1109/tgrs.2023.3247183
摘要

Gas reservoir identification using seismic data has become a major focus of geophysical exploration. This study presents a gas reservoir identification and structural evaluation method using artificial neural networks (ANNs) and the Viterbi algorithm to improve processing efficiency and evaluate gas reservoir structural control. Initial identification was conducted using deep neural networks (DNNs). Composite seismic attributes sensitive to the multicomponent seismic response characteristics of gas reservoirs were obtained. Subsequently, a model expansion dataset and network hyperparameter optimization strategy were employed to assess the optimal DNN model for ReLU activation with nine hidden layers (3–5–7–7–7–9–9–11–11–11–1). The training model was run with the three composite attributes as input to predict the gas-bearing probability distribution. Considering the importance of evaluating geological structural characteristics, an automatic horizon tracking method using the Viterbi algorithm was proposed to evaluate the structural factors of gas reservoirs. Finally, the ANN-based gas reservoir identification results were comprehensively evaluated based on structural characteristics, thus, reducing the uncertainty, or multiple solutions, predicted by mathematical methods. This scheme was successfully applied to assess synthetic and real data, demonstrating the consistency between the predicted gas reservoir areas and the true situation. The effective implementation of this scheme improves processing efficiency and provides a new way to shorten the exploration cycle of a gas reservoir.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助tsm采纳,获得10
刚刚
Aisha完成签到,获得积分10
刚刚
1秒前
甜乎贝贝完成签到 ,获得积分10
2秒前
mawanyu完成签到 ,获得积分10
2秒前
3秒前
3秒前
土豆完成签到,获得积分20
3秒前
周源源完成签到,获得积分10
4秒前
CodeCraft应助杨雨亭采纳,获得10
5秒前
研友_Z33EGZ发布了新的文献求助10
8秒前
牛安荷发布了新的文献求助10
9秒前
开朗可行完成签到,获得积分10
10秒前
丘比特应助端庄书雁采纳,获得10
11秒前
12秒前
Jasper应助兴奋的惜天采纳,获得10
15秒前
解靖宇发布了新的文献求助10
16秒前
Alicia完成签到,获得积分10
16秒前
stayloy完成签到,获得积分10
16秒前
小二郎应助陈陈陈采纳,获得30
17秒前
Lucas应助木子酒采纳,获得10
17秒前
Jimmy应助wzgkeyantong采纳,获得20
18秒前
科目三应助xiao123789采纳,获得10
18秒前
doug完成签到,获得积分0
19秒前
20秒前
小熊发布了新的文献求助10
20秒前
20秒前
SciGPT应助B1n采纳,获得10
21秒前
21秒前
小小科研人完成签到,获得积分10
22秒前
22秒前
23秒前
科研通AI2S应助机灵不评采纳,获得10
23秒前
小石榴的爸爸完成签到 ,获得积分10
24秒前
shidandan完成签到 ,获得积分10
24秒前
解靖宇完成签到,获得积分10
25秒前
25秒前
Cryo发布了新的文献求助10
26秒前
123发布了新的文献求助10
26秒前
心灵美雅山完成签到,获得积分10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162769
求助须知:如何正确求助?哪些是违规求助? 2813701
关于积分的说明 7901715
捐赠科研通 2473342
什么是DOI,文献DOI怎么找? 1316778
科研通“疑难数据库(出版商)”最低求助积分说明 631516
版权声明 602175