An Intelligent Approach for Gas Reservoir Identification and Structural Evaluation by ANN and Viterbi Algorithm—A Case Study From the Xujiahe Formation, Western Sichuan Depression, China

计算机科学 人工神经网络 维特比算法 算法 超参数 鉴定(生物学) 数据挖掘 人工智能 解码方法 植物 生物
作者
Kai Zhang,Niantian Lin,Jiuqiang Yang,Dong Zhang,Yan Cui,Jin Zhu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:7
标识
DOI:10.1109/tgrs.2023.3247183
摘要

Gas reservoir identification using seismic data has become a major focus of geophysical exploration. This study presents a gas reservoir identification and structural evaluation method using artificial neural networks (ANNs) and the Viterbi algorithm to improve processing efficiency and evaluate gas reservoir structural control. Initial identification was conducted using deep neural networks (DNNs). Composite seismic attributes sensitive to the multicomponent seismic response characteristics of gas reservoirs were obtained. Subsequently, a model expansion dataset and network hyperparameter optimization strategy were employed to assess the optimal DNN model for ReLU activation with nine hidden layers (3–5–7–7–7–9–9–11–11–11–1). The training model was run with the three composite attributes as input to predict the gas-bearing probability distribution. Considering the importance of evaluating geological structural characteristics, an automatic horizon tracking method using the Viterbi algorithm was proposed to evaluate the structural factors of gas reservoirs. Finally, the ANN-based gas reservoir identification results were comprehensively evaluated based on structural characteristics, thus, reducing the uncertainty, or multiple solutions, predicted by mathematical methods. This scheme was successfully applied to assess synthetic and real data, demonstrating the consistency between the predicted gas reservoir areas and the true situation. The effective implementation of this scheme improves processing efficiency and provides a new way to shorten the exploration cycle of a gas reservoir.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颜陌完成签到,获得积分10
刚刚
1秒前
匹诺曹完成签到,获得积分20
1秒前
夜柒七发布了新的文献求助10
2秒前
卫wei完成签到,获得积分10
2秒前
3秒前
23lk发布了新的文献求助10
3秒前
3秒前
温乘云发布了新的文献求助30
4秒前
4秒前
dylan1995发布了新的文献求助10
5秒前
Ava应助羫孔采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
pharrah发布了新的文献求助10
7秒前
7秒前
9秒前
拼搏荧发布了新的文献求助10
9秒前
调皮的沛萍完成签到,获得积分20
9秒前
23lk发布了新的文献求助10
9秒前
huofuman发布了新的文献求助10
9秒前
沧笙踏歌发布了新的文献求助10
10秒前
Chushi完成签到,获得积分10
11秒前
pharrah完成签到,获得积分10
12秒前
zhusihua发布了新的文献求助10
12秒前
13秒前
13秒前
丘比特应助Gyro采纳,获得10
14秒前
14秒前
西瓜汽水完成签到,获得积分10
15秒前
在水一方应助LHW采纳,获得10
15秒前
15秒前
15秒前
16秒前
16秒前
小瓢虫发布了新的文献求助10
17秒前
夜柒七完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502655
关于积分的说明 11109426
捐赠科研通 3233441
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870650
科研通“疑难数据库(出版商)”最低求助积分说明 802141