An Intelligent Approach for Gas Reservoir Identification and Structural Evaluation by ANN and Viterbi Algorithm—A Case Study From the Xujiahe Formation, Western Sichuan Depression, China

计算机科学 人工神经网络 维特比算法 算法 超参数 鉴定(生物学) 数据挖掘 人工智能 解码方法 植物 生物
作者
Kai Zhang,Niantian Lin,Jiuqiang Yang,Dong Zhang,Yan Cui,Jin Zhu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:7
标识
DOI:10.1109/tgrs.2023.3247183
摘要

Gas reservoir identification using seismic data has become a major focus of geophysical exploration. This study presents a gas reservoir identification and structural evaluation method using artificial neural networks (ANNs) and the Viterbi algorithm to improve processing efficiency and evaluate gas reservoir structural control. Initial identification was conducted using deep neural networks (DNNs). Composite seismic attributes sensitive to the multicomponent seismic response characteristics of gas reservoirs were obtained. Subsequently, a model expansion dataset and network hyperparameter optimization strategy were employed to assess the optimal DNN model for ReLU activation with nine hidden layers (3–5–7–7–7–9–9–11–11–11–1). The training model was run with the three composite attributes as input to predict the gas-bearing probability distribution. Considering the importance of evaluating geological structural characteristics, an automatic horizon tracking method using the Viterbi algorithm was proposed to evaluate the structural factors of gas reservoirs. Finally, the ANN-based gas reservoir identification results were comprehensively evaluated based on structural characteristics, thus, reducing the uncertainty, or multiple solutions, predicted by mathematical methods. This scheme was successfully applied to assess synthetic and real data, demonstrating the consistency between the predicted gas reservoir areas and the true situation. The effective implementation of this scheme improves processing efficiency and provides a new way to shorten the exploration cycle of a gas reservoir.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一一发布了新的文献求助10
刚刚
悦耳水之完成签到,获得积分10
2秒前
2秒前
ding应助灵巧荆采纳,获得10
3秒前
3秒前
绿色完成签到,获得积分10
3秒前
张无忌完成签到,获得积分10
4秒前
5秒前
5秒前
绿色发布了新的文献求助10
6秒前
7秒前
Eve完成签到,获得积分10
7秒前
有益发布了新的文献求助10
7秒前
啦啦啦完成签到,获得积分10
8秒前
cheng完成签到,获得积分10
8秒前
8秒前
thk1234完成签到,获得积分10
8秒前
9秒前
aura发布了新的文献求助10
9秒前
小刘应助cookie采纳,获得10
10秒前
11秒前
陌上花开完成签到,获得积分0
12秒前
12秒前
嘟嘟发布了新的文献求助10
12秒前
12秒前
13秒前
研一小刘完成签到,获得积分10
13秒前
善良的路灯完成签到,获得积分10
14秒前
uu发布了新的文献求助10
14秒前
15秒前
易烊千玺发布了新的文献求助10
16秒前
请叫我风吹麦浪应助HJJHJH采纳,获得20
16秒前
ZBN发布了新的文献求助10
16秒前
16秒前
善学以致用应助123采纳,获得10
18秒前
18秒前
19秒前
AFEUWOS01发布了新的文献求助30
19秒前
星辰大海应助Left采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794