特雷姆2
巨噬细胞极化
肺纤维化
纤维化
特发性肺纤维化
巨噬细胞
癌症研究
生物
免疫学
医学
病理
肺
髓样
内科学
生物化学
髓系细胞
体外
作者
Qiujie Luo,Dawei Deng,Li Yang,Hongjie Shi,Jinping Zhao,Qiaofeng Qian,Wei Wang,Jie Cai,Wenjun Yu,Jinping Liu
标识
DOI:10.1016/j.intimp.2023.110070
摘要
Rationale Idiopathic pulmonary fibrosis (IPF) is a lung disease with high mortality, limited treatment options and an unknown aetiology. M2 macrophages play a critical role in the pathological process of IPF. Triggering receptor expressed on myeloid cells-2 (TREM2) participates in the regulation of macrophages, although its role in IPF remains elusive.This study examined the role of TREM2 in macrophage regulation using a well-established bleomycin (BLM)-induced pulmonary fibrosis (PF) mouse model. TREM2 insufficiency was induced by intratracheal treatment with TREM2-specific siRNA. The effects of TREM2 on IPF were evaluated using histological staining and molecular biological methods.TREM2 expression levels were significantly elevated in the lungs of IPF patients and mice with BLM-induced pulmonary fibrosis mice. Bioinformatics analysis revealed that IPF patients with higher TREM2 expression had a shorter survival time, and that TREM2 expression was closely associated with fibroblasts and M2 macrophages. Gene Ontology (GO) enrichment analysis showed that found TREM2-related differentially expressed genes (DEGs) were associated with inflammatory responses, extracellular matrix (ECM) and collagen formation. Single-cell RNA sequencing analysis revealed that TREM2 was predominantly expressed in macrophages. TREM2 insufficiency inhibited BLM-induced pulmonary fibrosis and M2 macrophage polarization. Mechanistic studies showed that TREM2 insufficiency suppressed the activation of STAT6 and the expression of fibrotic factors such as Fibronectin (Fib), Collagen I (Col I) and α- smooth muscle actin (α-SMA).Our study showed that TREM2 insufficiency might alleviate pulmonary fibrosis possibly through macrophage polarization regulation via STAT6 activation, providing a promising macrophage-related approach for the clinical therapy of pulmonary fibrosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI