Data-based modeling and control of nonlinear process systems using sparse identification: An overview of recent results

非线性系统 系统标识 计算机科学 过程(计算) 鉴定(生物学) 控制器(灌溉) 非线性系统辨识 控制工程 系统动力学 动力系统理论 噪音(视频) 过程建模 控制理论(社会学) 李雅普诺夫函数 过程控制 在制品 数据建模 人工智能 工程类 控制(管理) 物理 植物 量子力学 生物 操作系统 运营管理 数据库 农学 图像(数学)
作者
Fahim Abdullah,Panagiotis D. Christofides
出处
期刊:Computers & Chemical Engineering [Elsevier]
卷期号:174: 108247-108247 被引量:17
标识
DOI:10.1016/j.compchemeng.2023.108247
摘要

This paper discusses recent developments in the data-based modeling and control of nonlinear chemical process systems using sparse identification of nonlinear dynamics (SINDy). SINDy is a recent nonlinear system identification technique that uses only measurement data to identify model dynamical systems in the form of first-order nonlinear differential equations. In this work, the challenges of handling time-scale multiplicities and noisy sensor data when using SINDy are addressed. Specifically, a brief overview of novel methods devised to overcome these challenges are described, along with modeling guidelines for using the proposed techniques for process systems. When applied to two-time-scale systems, to overcome model stiffness, which leads to ill-conditioned controllers, a reduced-order modeling approach is proposed where SINDy is used to model the slow dynamics, and nonlinear principal component analysis is used to algebraically “slave” the fast states to the slow states. The resulting model can then be used in a Lyapunov-based model predictive controller with guaranteed closed-loop stability provided the separation of fast and slow dynamics is sufficiently large. To handle high levels of sensor noise, SINDy is combined with subsampling and co-teaching to improve modeling accuracy. The challenges of modeling and controlling large-scale systems using noisy industrial data are then addressed by using ensemble learning with SINDy. After summarizing the advances, a nonlinear chemical process is used to provide an end-to-end demonstration of process modeling using sparse identification with guidelines for chemical engineering practitioners. Finally, several future research directions for the incorporation of SINDy into process systems engineering are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫之林发布了新的文献求助10
1秒前
1秒前
科研通AI5应助莫铭采纳,获得10
2秒前
2秒前
ezio发布了新的文献求助10
4秒前
科研通AI5应助诺之采纳,获得10
4秒前
乐优完成签到 ,获得积分10
4秒前
李爱国应助香蕉初夏采纳,获得10
4秒前
欣慰的凡儿完成签到,获得积分10
4秒前
连长完成签到,获得积分10
5秒前
破晓之照完成签到,获得积分10
6秒前
科研通AI5应助早日毕业采纳,获得10
8秒前
星辰大海应助xy820采纳,获得10
8秒前
8秒前
激昂的幻梦完成签到,获得积分10
9秒前
领导范儿应助机智的幼丝采纳,获得10
10秒前
10秒前
lawren关注了科研通微信公众号
11秒前
zhou发布了新的文献求助10
12秒前
123完成签到,获得积分10
13秒前
Ywffffff发布了新的文献求助10
15秒前
叭叭完成签到,获得积分10
16秒前
16秒前
LTT417完成签到,获得积分10
17秒前
红鲤完成签到,获得积分10
20秒前
斯文败类应助文竹薄荷采纳,获得30
21秒前
大个应助灵活又幸福的胖采纳,获得10
21秒前
hmgdktf完成签到,获得积分10
21秒前
未来可期发布了新的文献求助10
22秒前
23秒前
枫之林完成签到,获得积分10
24秒前
24秒前
26秒前
今今完成签到,获得积分10
28秒前
28秒前
a龙完成签到,获得积分10
28秒前
栗子完成签到,获得积分10
28秒前
28秒前
超级天川完成签到,获得积分10
29秒前
卷心菜发布了新的文献求助10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540600
求助须知:如何正确求助?哪些是违规求助? 3117879
关于积分的说明 9332947
捐赠科研通 2815724
什么是DOI,文献DOI怎么找? 1547709
邀请新用户注册赠送积分活动 721130
科研通“疑难数据库(出版商)”最低求助积分说明 712481