Swin Transformer V2: Scaling Up Capacity and Resolution

计算机科学 人工智能 变压器 规范化(社会学) 分割 缩放比例 计算机视觉 模式识别(心理学) 电压 工程类 几何学 人类学 数学 电气工程 社会学
作者
Ze Liu,Han Hu,Yutong Lin,Zhuliang Yao,Zhenda Xie,Yixuan Wei,Ning Jia,Yue Cao,Zheng Zhang,Li Dong,Furu Wei,Baining Guo
标识
DOI:10.1109/cvpr52688.2022.01170
摘要

We present techniques for scaling Swin Transformer [35] up to 3 billion parameters and making it capable of training with images of up to 1,536x1,536 resolution. By scaling up capacity and resolution, Swin Transformer sets new records on four representative vision benchmarks: 84.0% top-1 accuracy on ImageNet- V2 image classification, 63.1 / 54.4 box / mask mAP on COCO object detection, 59.9 mIoU on ADE20K semantic segmentation, and 86.8% top-1 accuracy on Kinetics-400 video action classification. We tackle issues of training instability, and study how to effectively transfer models pre-trained at low resolutions to higher resolution ones. To this aim, several novel technologies are proposed: 1) a residual post normalization technique and a scaled cosine attention approach to improve the stability of large vision models; 2) a log-spaced continuous position bias technique to effectively transfer models pre-trained at low-resolution images and windows to their higher-resolution counterparts. In addition, we share our crucial implementation details that lead to significant savings of GPU memory consumption and thus make it feasi-ble to train large vision models with regular GPUs. Using these techniques and self-supervised pre-training, we suc-cessfully train a strong 3 billion Swin Transformer model and effectively transfer it to various vision tasks involving high-resolution images or windows, achieving the state-of-the-art accuracy on a variety of benchmarks. Code is avail-able at https://github.com/microsoft/Swin-Transformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
韩饼干发布了新的文献求助10
刚刚
xleyy完成签到,获得积分10
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
zhonglv7应助科研通管家采纳,获得10
1秒前
热心树叶应助科研通管家采纳,获得30
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
NexusExplorer应助77采纳,获得10
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
代阿飞应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
萨尔莫斯发布了新的文献求助10
3秒前
含蓄薯片完成签到 ,获得积分10
4秒前
cou发布了新的文献求助10
4秒前
leezz完成签到,获得积分10
5秒前
霁星河完成签到,获得积分10
5秒前
爆米花应助小范要努力采纳,获得10
6秒前
samal完成签到 ,获得积分10
7秒前
搜集达人应助霸道恒天采纳,获得10
9秒前
复杂的寻芹完成签到,获得积分10
9秒前
Liplay发布了新的文献求助10
9秒前
默默访冬完成签到 ,获得积分10
12秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499374
求助须知:如何正确求助?哪些是违规求助? 4596275
关于积分的说明 14453468
捐赠科研通 4529440
什么是DOI,文献DOI怎么找? 2481961
邀请新用户注册赠送积分活动 1465938
关于科研通互助平台的介绍 1438822