清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Benchmarking dynamic neural-network models of the human speed-accuracy tradeoff

计算机科学 水准点(测量) 延迟(音频) 人工神经网络 计算 人工智能 航程(航空) 算法 模式识别(心理学) 大地测量学 电信 复合材料 材料科学 地理
作者
Ajay Subramanian,Elena Sizikova,Omkar Kumbhar,Najib J. Majaj,Denis G. Pelli
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:22 (14): 4359-4359 被引量:2
标识
DOI:10.1167/jov.22.14.4359
摘要

People take a variable amount of time (0.1 - 10 s) to recognize an object and can trade speed for accuracy. Various time-constrained tasks demand a wide range of accuracy and latency. Previous work (Spoerer’20) has modeled only modest speed-accuracy tradeoffs (SATs) with a min-to-max range of merely 6% accuracy and 200 ms reaction time, a tiny fraction of the human range. Here, we collect and present a public human benchmark where we use image perturbations to adjust task difficulty and increase the accuracy range to more than 50%. Furthermore, we show that dynamic neural networks are a promising model of the SAT and capture the behavior without needing recurrence. 142 online participants categorized CIFAR-10 images with controlled reaction time. Reaction time (RT) was defined as the elapsed time between stimulus presentation and a keypress response. We ran 5 blocks of 300 trials, each with a different reaction time from 200-1000 ms and repeated the experiment with 4 different viewing conditions: color, grayscale, noise, and blur. Three networks: MSDNet (Huang’17), SCAN (Zhang’19), and ConvRNN (Spoerer’20) were trained on CIFAR-10 image classification. Using FLOPs as an analogue for human reaction time, we tested these networks by forcing them to “respond” using different amounts of computation, across all viewing conditions. We compared the three networks and humans using two metrics: accuracy range (difference between maximum and minimum accuracy when reaction time is varied) and correlation between speed-accuracy trade-off curves. MSDNet gives a better account than previous attempts without needing recurrence. When trained with noise, it shows high correlation (0.93) with human SAT. However, humans are much more flexible, with a large 51% accuracy range while the best network, MSDNet trained with noise, shows only 19%. Thus, our benchmark presents a challenging goal for future work that aims to model SAT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
萧水白完成签到,获得积分0
9秒前
lilaccalla完成签到 ,获得积分10
15秒前
浚稚完成签到 ,获得积分10
28秒前
Antonio完成签到 ,获得积分10
1分钟前
SJD完成签到,获得积分0
1分钟前
z1y1p1完成签到,获得积分10
1分钟前
归尘应助Benhnhk21采纳,获得30
1分钟前
直率的笑翠完成签到 ,获得积分10
1分钟前
1分钟前
未完成完成签到,获得积分10
1分钟前
阿童木完成签到,获得积分10
1分钟前
微卫星不稳定完成签到 ,获得积分10
1分钟前
emxzemxz完成签到 ,获得积分10
2分钟前
科研狗完成签到 ,获得积分10
2分钟前
十一完成签到 ,获得积分10
2分钟前
2分钟前
vbnn完成签到 ,获得积分10
2分钟前
红茸茸羊完成签到 ,获得积分10
2分钟前
3分钟前
mf2002mf完成签到 ,获得积分10
3分钟前
iberis完成签到 ,获得积分10
3分钟前
藜藜藜在乎你完成签到 ,获得积分10
3分钟前
pjxxx完成签到 ,获得积分10
3分钟前
3分钟前
X519664508完成签到,获得积分0
3分钟前
3分钟前
Arthur发布了新的文献求助10
3分钟前
3分钟前
Arthur完成签到,获得积分10
3分钟前
GGBond完成签到 ,获得积分10
4分钟前
酷波er应助三井库里采纳,获得10
4分钟前
4分钟前
三井库里发布了新的文献求助10
4分钟前
4分钟前
4分钟前
iNk应助几米的漫画99采纳,获得10
4分钟前
lyj完成签到 ,获得积分10
4分钟前
紫清发布了新的文献求助10
4分钟前
紫清完成签到,获得积分10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466837
求助须知:如何正确求助?哪些是违规求助? 3059674
关于积分的说明 9067359
捐赠科研通 2750142
什么是DOI,文献DOI怎么找? 1509066
科研通“疑难数据库(出版商)”最低求助积分说明 697126
邀请新用户注册赠送积分活动 696913