Benchmarking dynamic neural-network models of the human speed-accuracy tradeoff

计算机科学 水准点(测量) 延迟(音频) 人工神经网络 计算 人工智能 航程(航空) 算法 模式识别(心理学) 大地测量学 电信 复合材料 材料科学 地理
作者
Ajay Subramanian,Elena Sizikova,Omkar Kumbhar,Najib J. Majaj,Denis G. Pelli
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology]
卷期号:22 (14): 4359-4359 被引量:2
标识
DOI:10.1167/jov.22.14.4359
摘要

People take a variable amount of time (0.1 - 10 s) to recognize an object and can trade speed for accuracy. Various time-constrained tasks demand a wide range of accuracy and latency. Previous work (Spoerer’20) has modeled only modest speed-accuracy tradeoffs (SATs) with a min-to-max range of merely 6% accuracy and 200 ms reaction time, a tiny fraction of the human range. Here, we collect and present a public human benchmark where we use image perturbations to adjust task difficulty and increase the accuracy range to more than 50%. Furthermore, we show that dynamic neural networks are a promising model of the SAT and capture the behavior without needing recurrence. 142 online participants categorized CIFAR-10 images with controlled reaction time. Reaction time (RT) was defined as the elapsed time between stimulus presentation and a keypress response. We ran 5 blocks of 300 trials, each with a different reaction time from 200-1000 ms and repeated the experiment with 4 different viewing conditions: color, grayscale, noise, and blur. Three networks: MSDNet (Huang’17), SCAN (Zhang’19), and ConvRNN (Spoerer’20) were trained on CIFAR-10 image classification. Using FLOPs as an analogue for human reaction time, we tested these networks by forcing them to “respond” using different amounts of computation, across all viewing conditions. We compared the three networks and humans using two metrics: accuracy range (difference between maximum and minimum accuracy when reaction time is varied) and correlation between speed-accuracy trade-off curves. MSDNet gives a better account than previous attempts without needing recurrence. When trained with noise, it shows high correlation (0.93) with human SAT. However, humans are much more flexible, with a large 51% accuracy range while the best network, MSDNet trained with noise, shows only 19%. Thus, our benchmark presents a challenging goal for future work that aims to model SAT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
魔猿应助fdpb采纳,获得10
刚刚
爆米花应助cllll采纳,获得10
1秒前
4秒前
小北发布了新的文献求助10
5秒前
5秒前
脑斧儿完成签到,获得积分10
6秒前
科研通AI5应助啃猫爪采纳,获得10
7秒前
一一发布了新的文献求助10
9秒前
风-FBDD发布了新的文献求助10
10秒前
13秒前
13秒前
酷波er应助如意2023采纳,获得10
16秒前
cllll发布了新的文献求助10
16秒前
青山完成签到,获得积分10
17秒前
ding应助体贴汽车采纳,获得10
26秒前
HEIHEI完成签到,获得积分10
26秒前
cllll完成签到,获得积分20
30秒前
30秒前
一一完成签到,获得积分10
30秒前
英姑应助hanhan采纳,获得10
31秒前
cs完成签到 ,获得积分10
32秒前
盛夏完成签到,获得积分10
33秒前
33秒前
suiyi发布了新的文献求助10
35秒前
36秒前
lqy发布了新的文献求助10
36秒前
37秒前
晨熙发布了新的文献求助30
37秒前
38秒前
体贴汽车发布了新的文献求助10
40秒前
JxJ完成签到,获得积分10
40秒前
鹏程完成签到 ,获得积分10
41秒前
41秒前
Active发布了新的文献求助10
43秒前
YamDaamCaa应助Captain_H采纳,获得30
45秒前
今后应助mzone采纳,获得10
45秒前
Gauze完成签到,获得积分10
46秒前
lklklk发布了新的文献求助10
46秒前
YX关注了科研通微信公众号
47秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967180
求助须知:如何正确求助?哪些是违规求助? 3512526
关于积分的说明 11163850
捐赠科研通 3247430
什么是DOI,文献DOI怎么找? 1793831
邀请新用户注册赠送积分活动 874650
科研通“疑难数据库(出版商)”最低求助积分说明 804494