清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Benchmarking dynamic neural-network models of the human speed-accuracy tradeoff

计算机科学 水准点(测量) 延迟(音频) 人工神经网络 计算 人工智能 航程(航空) 算法 模式识别(心理学) 大地测量学 电信 复合材料 材料科学 地理
作者
Ajay Subramanian,Elena Sizikova,Omkar Kumbhar,Najib J. Majaj,Denis G. Pelli
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:22 (14): 4359-4359 被引量:2
标识
DOI:10.1167/jov.22.14.4359
摘要

People take a variable amount of time (0.1 - 10 s) to recognize an object and can trade speed for accuracy. Various time-constrained tasks demand a wide range of accuracy and latency. Previous work (Spoerer’20) has modeled only modest speed-accuracy tradeoffs (SATs) with a min-to-max range of merely 6% accuracy and 200 ms reaction time, a tiny fraction of the human range. Here, we collect and present a public human benchmark where we use image perturbations to adjust task difficulty and increase the accuracy range to more than 50%. Furthermore, we show that dynamic neural networks are a promising model of the SAT and capture the behavior without needing recurrence. 142 online participants categorized CIFAR-10 images with controlled reaction time. Reaction time (RT) was defined as the elapsed time between stimulus presentation and a keypress response. We ran 5 blocks of 300 trials, each with a different reaction time from 200-1000 ms and repeated the experiment with 4 different viewing conditions: color, grayscale, noise, and blur. Three networks: MSDNet (Huang’17), SCAN (Zhang’19), and ConvRNN (Spoerer’20) were trained on CIFAR-10 image classification. Using FLOPs as an analogue for human reaction time, we tested these networks by forcing them to “respond” using different amounts of computation, across all viewing conditions. We compared the three networks and humans using two metrics: accuracy range (difference between maximum and minimum accuracy when reaction time is varied) and correlation between speed-accuracy trade-off curves. MSDNet gives a better account than previous attempts without needing recurrence. When trained with noise, it shows high correlation (0.93) with human SAT. However, humans are much more flexible, with a large 51% accuracy range while the best network, MSDNet trained with noise, shows only 19%. Thus, our benchmark presents a challenging goal for future work that aims to model SAT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ktw完成签到,获得积分10
25秒前
默默完成签到 ,获得积分10
35秒前
1分钟前
1分钟前
曾经问雁完成签到,获得积分10
1分钟前
1分钟前
曾经问雁发布了新的文献求助10
1分钟前
1分钟前
1分钟前
陈尹蓝完成签到 ,获得积分10
2分钟前
2分钟前
乐乐应助Marshall采纳,获得10
2分钟前
3分钟前
Marshall发布了新的文献求助10
3分钟前
锦鲤完成签到,获得积分10
3分钟前
科研通AI6.1应助twk采纳,获得10
3分钟前
3分钟前
大医仁心完成签到 ,获得积分10
3分钟前
NattyPoe应助科研通管家采纳,获得10
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
卓天宇完成签到,获得积分0
4分钟前
量子星尘发布了新的文献求助50
4分钟前
4分钟前
小李老博完成签到,获得积分10
4分钟前
在水一方应助科研通管家采纳,获得10
5分钟前
NattyPoe应助科研通管家采纳,获得10
5分钟前
5分钟前
两个榴莲完成签到,获得积分0
6分钟前
6分钟前
魏猛完成签到,获得积分10
7分钟前
ilihe应助dd采纳,获得10
7分钟前
简单发布了新的文献求助20
7分钟前
dd完成签到,获得积分10
8分钟前
简单发布了新的文献求助20
8分钟前
开心每一天完成签到 ,获得积分10
8分钟前
无极微光应助简单采纳,获得20
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788848
求助须知:如何正确求助?哪些是违规求助? 5712796
关于积分的说明 15473966
捐赠科研通 4916884
什么是DOI,文献DOI怎么找? 2646597
邀请新用户注册赠送积分活动 1594281
关于科研通互助平台的介绍 1548701