Artificial intelligence: A critical review of applications for lung nodule and lung cancer

肺癌 结核(地质) 医学 背景(考古学) 肺癌筛查 人工智能 卷积神经网络 放射科 深度学习 分割 恶性肿瘤 机器学习 计算机科学 病理 内科学 古生物学 生物
作者
Constance de Margerie‐Mellon,Guillaume Chassagnon
出处
期刊:Diagnostic and interventional imaging [Elsevier]
卷期号:104 (1): 11-17 被引量:42
标识
DOI:10.1016/j.diii.2022.11.007
摘要

Artificial intelligence (AI) is a broad concept that usually refers to computer programs that can learn from data and perform certain specific tasks. In the recent years, the growth of deep learning, a successful technique for computer vision tasks that does not require explicit programming, coupled with the availability of large imaging databases fostered the development of multiple applications in the medical imaging field, especially for lung nodules and lung cancer, mostly through convolutional neural networks (CNN). Some of the first applications of AI is this field were dedicated to automated detection of lung nodules on X-ray and computed tomography (CT) examinations, with performances now reaching or exceeding those of radiologists. For lung nodule segmentation, CNN-based algorithms applied to CT images show excellent spatial overlap index with manual segmentation, even for irregular and ground glass nodules. A third application of AI is the classification of lung nodules between malignant and benign, which could limit the number of follow-up CT examinations for less suspicious lesions. Several algorithms have demonstrated excellent capabilities for the prediction of the malignancy risk when a nodule is discovered. These different applications of AI for lung nodules are particularly appealing in the context of lung cancer screening. In the field of lung cancer, AI tools applied to lung imaging have been investigated for distinct aims. First, they could play a role for the non-invasive characterization of tumors, especially for histological subtype and somatic mutation predictions, with a potential therapeutic impact. Additionally, they could help predict the patient prognosis, in combination to clinical data. Despite these encouraging perspectives, clinical implementation of AI tools is only beginning because of the lack of generalizability of published studies, of an inner obscure working and because of limited data about the impact of such tools on the radiologists’ decision and on the patient outcome. Radiologists must be active participants in the process of evaluating AI tools, as such tools could support their daily work and offer them more time for high added value tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靜心完成签到 ,获得积分10
刚刚
刚刚
小李儿完成签到,获得积分20
1秒前
1秒前
123发布了新的文献求助10
1秒前
1秒前
1秒前
iufan发布了新的文献求助10
2秒前
小闪光完成签到 ,获得积分10
3秒前
满姣发布了新的文献求助10
3秒前
舒先生完成签到,获得积分10
3秒前
lusuoshan发布了新的文献求助10
3秒前
4秒前
5秒前
科研通AI2S应助LIUYI采纳,获得10
6秒前
李健应助我的心情愉悦采纳,获得10
6秒前
6秒前
dong发布了新的文献求助10
6秒前
共享精神应助史道夫采纳,获得10
6秒前
wanci应助史道夫采纳,获得10
7秒前
隐形曼青应助史道夫采纳,获得10
7秒前
ding应助史道夫采纳,获得10
7秒前
打打应助史道夫采纳,获得10
7秒前
上官若男应助史道夫采纳,获得10
7秒前
Ava应助史道夫采纳,获得10
7秒前
李爱国应助史道夫采纳,获得10
7秒前
思源应助史道夫采纳,获得10
7秒前
orixero应助史道夫采纳,获得10
7秒前
852应助潇湘阁我爱吃采纳,获得10
7秒前
tll完成签到,获得积分10
8秒前
8秒前
Hello应助漫步人生采纳,获得10
8秒前
jerome完成签到,获得积分20
9秒前
9秒前
tll发布了新的文献求助10
10秒前
徐嘉雯完成签到 ,获得积分10
10秒前
刘浩然发布了新的文献求助10
11秒前
11秒前
不安的冷荷完成签到,获得积分10
12秒前
CodeCraft应助努努力采纳,获得10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134700
求助须知:如何正确求助?哪些是违规求助? 2785629
关于积分的说明 7773333
捐赠科研通 2441325
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825