Real-Time Gait Phase Detection on Wearable Devices for Real-World Free-Living Gait

可穿戴计算机 步态 计算机科学 稳健性(进化) 支持向量机 步态分析 人工智能 微控制器 聚类分析 物理医学与康复 嵌入式系统 医学 生物化学 基因 化学
作者
Jiaen Wu,Barna Becsek,Alessandro Schaer,Henrik Maurenbrecher,George Chatzipirpiridis,Olgaç Ergeneman,Salvador Pané,Hamdi Torun,Bradley J. Nelson
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 1295-1306 被引量:8
标识
DOI:10.1109/jbhi.2022.3228329
摘要

Detecting gait phases with wearables unobtrusively and reliably in real-time is important for clinical gait rehabilitation and early diagnosis of neurological diseases. Due to hardware limitations of microcontrollers in wearable devices (e.g., memory and computation power), reliable real-time gait phase detection on the microcontrollers remains a challenge, especially for long-term real-world free-living gait. In this work, a novel algorithm based on a reduced support vector machine (RSVM) and a finite state machine (FSM) is developed to address this. The RSVM is developed by exploiting the cascaded K-means clustering to reduce the model size and computation time of a standard SVM by 88% and a factor of 36, with only minor degradation in gait phase prediction accuracy of around 4%. For each gait phase prediction from the RSVM, the FSM is designed to validate the prediction and correct misclassifications. The developed algorithm is implemented on a microcontroller of a wearable device and its real-time (on the fly) classification performance is evaluated by twenty healthy subjects walking along a predefined real-world route with uncontrolled free-living gait. It shows a promising real-time performance with an accuracy of 91.51%, a sensitivity of 91.70%, and a specificity of 95.77%. The algorithm also demonstrates its robustness with varying walking conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
花开富贵完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
墨墨完成签到,获得积分20
2秒前
3秒前
意志所向发布了新的文献求助10
4秒前
宋晓蓝完成签到,获得积分10
5秒前
浮生发布了新的文献求助10
7秒前
花开富贵发布了新的文献求助10
8秒前
9秒前
失眠的仙人掌完成签到,获得积分10
10秒前
slk完成签到 ,获得积分10
11秒前
意志所向完成签到,获得积分10
12秒前
13秒前
CodeCraft应助英姿不是我采纳,获得10
14秒前
14秒前
SciGPT应助洁净小鸽子采纳,获得10
15秒前
15秒前
slk关注了科研通微信公众号
16秒前
16秒前
所所应助龙哥哥Antony采纳,获得10
17秒前
lxaz发布了新的文献求助10
18秒前
19秒前
wsx完成签到,获得积分10
19秒前
聪慧的迎夏完成签到,获得积分10
19秒前
慕青应助我很厉害的采纳,获得10
19秒前
zj发布了新的文献求助10
20秒前
浮生发布了新的文献求助10
20秒前
听蝉完成签到 ,获得积分10
20秒前
南冥完成签到 ,获得积分10
25秒前
26秒前
Akim应助小仙鱼采纳,获得10
26秒前
botanist完成签到 ,获得积分10
27秒前
28秒前
香蕉觅云应助翊嘉采纳,获得10
29秒前
30秒前
31秒前
小人物的坚持完成签到 ,获得积分10
32秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073149
关于积分的说明 9129737
捐赠科研通 2764836
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009