Towards coordinated and robust real-time control: a decentralized approach for combined sewer overflow and urban flooding reduction based on multi-agent reinforcement learning

强化学习 稳健性(进化) 备份 洪水(心理学) 计算机科学 水准点(测量) 合流下水道 分散系统 分布式计算 控制(管理) 人工智能 雨水 生物 基因 大地测量学 化学 数据库 生物化学 地理 地表径流 心理治疗师 生态学 心理学
作者
Zhiyu Zhang,Wenchong Tian,Zhenliang Liao
出处
期刊:Water Research [Elsevier]
卷期号:229: 119498-119498 被引量:24
标识
DOI:10.1016/j.watres.2022.119498
摘要

The real-time control (RTC) of urban drainage systems can make full use of the capabilities of existing infrastructures to mitigate combined sewer overflow (CSO) and urban flooding. Despite the benefits of RTC, it may encounter potential risks and failures, which need further consideration to enhance its robustness. Besides failures of hardware components such as sensors and actuators, the RTC performance is also sensitive to communication failures between the devices that are spatially distributed in a catchment-scale system. This paper proposes a decentralized control strategy based on multi-agent reinforcement learning to enhance communication robustness and coordinate the decentralized control agents through centralized training. To investigate different control structures, a centralized and a fully decentralized strategy are also developed based on reinforcement learning (RL) for comparison. A benchmark drainage model and a real-world drainage model are formulated as two cases, and the control agents are trained to control the orifices or pumps for CSO or flooding mitigation in each case. The three RL strategies reduce the CSO volume by 5.62-9.30% compared with a static baseline in historical rainfalls of the benchmark case and reduce the CSO and flooding volume by 14.39-21.36% compared with currently-used rule-based control in synthetic rainfalls of the real-world case. Benefitting from centralized training, the decentralized agents can achieve similar performance to the centralized agent. The decentralized control also enhances the communication robustness with smaller performance loss than the centralized control when observation communication fails, and provides a robust backup at the local level to limit the uncertainties when action commands from the centralized agent are lost. The results and findings indicate that multi-agent RL contributes to a coordinated and robust solution for RTC of urban drainage systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助冷酷慕山采纳,获得10
1秒前
cocolu应助郭mm采纳,获得10
2秒前
nzh19802发布了新的文献求助10
3秒前
无私幻枫完成签到,获得积分20
4秒前
爱听歌沂完成签到,获得积分20
6秒前
7秒前
雪山飞龙发布了新的文献求助10
9秒前
可爱的函函应助tienslord采纳,获得10
9秒前
Efei完成签到,获得积分10
9秒前
彭于晏应助tong采纳,获得10
10秒前
爆米花应助Andy采纳,获得10
10秒前
ding应助有魅力的念烟采纳,获得10
11秒前
梁梁梁完成签到,获得积分10
11秒前
Wang发布了新的文献求助10
12秒前
12秒前
自然卷的春天完成签到,获得积分10
13秒前
13秒前
13秒前
Tian完成签到 ,获得积分10
13秒前
悦耳的绿旋完成签到,获得积分10
14秒前
仙林AK47完成签到,获得积分10
14秒前
wsf2023发布了新的文献求助10
15秒前
15秒前
16秒前
以恒之心发布了新的文献求助10
16秒前
LU发布了新的文献求助10
16秒前
123完成签到,获得积分10
17秒前
17秒前
小熊完成签到,获得积分10
17秒前
winter完成签到 ,获得积分20
18秒前
YQF完成签到,获得积分10
18秒前
Andy完成签到,获得积分10
19秒前
喜悦豌豆完成签到,获得积分10
19秒前
124应助典雅的俊驰采纳,获得10
19秒前
大马哈鱼完成签到 ,获得积分10
20秒前
20秒前
毛毛发布了新的文献求助10
20秒前
21秒前
有点冷发布了新的文献求助10
21秒前
tong发布了新的文献求助10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300304
求助须知:如何正确求助?哪些是违规求助? 2935009
关于积分的说明 8471348
捐赠科研通 2608513
什么是DOI,文献DOI怎么找? 1424303
科研通“疑难数据库(出版商)”最低求助积分说明 661933
邀请新用户注册赠送积分活动 645649