A grid‐based classification and box‐based detection fusion model for asphalt pavement crack

网格 计算机科学 算法 网格法乘法 接头(建筑物) 滤波器(信号处理) 沥青 集合(抽象数据类型) 模式识别(心理学) 人工智能 结构工程 工程类 计算机视觉 数学 材料科学 几何学 复合材料 程序设计语言
作者
Bao‐Luo Li,Qi Yu,Jian‐Sheng Fan,Yu‐Fei Liu,Cheng Liu
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (16): 2279-2299 被引量:13
标识
DOI:10.1111/mice.12962
摘要

Abstract Crack identification is essential for the preventive maintenance of asphalt pavement. Through periodic inspection, the characteristics of existing and emerging cracks can be obtained, and the pavement condition index can be calculated to assess pavement health. The most common method to estimate the area of cracks in an image is to count the number of grid cells or boxes that cover the cracks in an image. Accurate and efficient crack identification is the premise of crack assessment. However, the current patch‐based classification method is limited by the receptive field and cannot be used to directly classify cracks. Furthermore, the postprocessing algorithm in anchor‐based detection is not explicitly optimized for crack topology. In this paper, a new model, which is the fusion of grid‐based classification and box‐based detection based on You Only Look Once version 5 (YOLO v5) is developed and described for the first time. The accuracy and efficiency of the model are high partly due to the implementation of a shared backbone network, multi‐task learning, and joint training. The non‐maximum suppression (NMS)–area‐reduction suppression (ARS) algorithm is presented to filter redundant, overlapping prediction boxes in the postprocessing stage for the crack topology, and the mapping and matching algorithm is proposed to combine the advantages of both the grid‐based and box‐based models. A double‐labeled dataset containing tens of thousands of asphalt pavement images is assembled, and the proposed method is verified on the test set. The fusion model has superior performance over the individual classification and detection models, and the proposed NMS‐ARS algorithm further improves the detection accuracy. Experimental results demonstrate that the presented method effectively realizes automatic crack identification for asphalt pavement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的苡完成签到,获得积分10
1秒前
清河海风完成签到,获得积分10
1秒前
2秒前
啦啦啦啦完成签到 ,获得积分10
3秒前
无限的晓蓝关注了科研通微信公众号
4秒前
zhazd发布了新的文献求助10
5秒前
6秒前
7秒前
橙酒发布了新的文献求助10
8秒前
nini应助出岫采纳,获得50
9秒前
杨佳莉完成签到,获得积分10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
核桃应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
大佛应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
yuyu发布了新的文献求助20
10秒前
10秒前
10秒前
10秒前
10秒前
活泼的大船完成签到,获得积分10
10秒前
华仔应助xlz采纳,获得10
12秒前
13秒前
核桃发布了新的文献求助10
13秒前
13秒前
14秒前
geg发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
李爱国应助mumu采纳,获得10
15秒前
烟花应助聪明的鞅采纳,获得10
15秒前
yang完成签到,获得积分10
16秒前
光亮毛豆完成签到,获得积分10
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781