A grid‐based classification and box‐based detection fusion model for asphalt pavement crack

网格 计算机科学 算法 网格法乘法 接头(建筑物) 滤波器(信号处理) 沥青 集合(抽象数据类型) 模式识别(心理学) 人工智能 结构工程 工程类 计算机视觉 数学 材料科学 几何学 复合材料 程序设计语言
作者
Bao‐Luo Li,Qi Yu,Jian‐Sheng Fan,Yu‐Fei Liu,Cheng Liu
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (16): 2279-2299 被引量:13
标识
DOI:10.1111/mice.12962
摘要

Abstract Crack identification is essential for the preventive maintenance of asphalt pavement. Through periodic inspection, the characteristics of existing and emerging cracks can be obtained, and the pavement condition index can be calculated to assess pavement health. The most common method to estimate the area of cracks in an image is to count the number of grid cells or boxes that cover the cracks in an image. Accurate and efficient crack identification is the premise of crack assessment. However, the current patch‐based classification method is limited by the receptive field and cannot be used to directly classify cracks. Furthermore, the postprocessing algorithm in anchor‐based detection is not explicitly optimized for crack topology. In this paper, a new model, which is the fusion of grid‐based classification and box‐based detection based on You Only Look Once version 5 (YOLO v5) is developed and described for the first time. The accuracy and efficiency of the model are high partly due to the implementation of a shared backbone network, multi‐task learning, and joint training. The non‐maximum suppression (NMS)–area‐reduction suppression (ARS) algorithm is presented to filter redundant, overlapping prediction boxes in the postprocessing stage for the crack topology, and the mapping and matching algorithm is proposed to combine the advantages of both the grid‐based and box‐based models. A double‐labeled dataset containing tens of thousands of asphalt pavement images is assembled, and the proposed method is verified on the test set. The fusion model has superior performance over the individual classification and detection models, and the proposed NMS‐ARS algorithm further improves the detection accuracy. Experimental results demonstrate that the presented method effectively realizes automatic crack identification for asphalt pavement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强亦丝应助科研通管家采纳,获得20
1秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
2秒前
ni完成签到 ,获得积分10
4秒前
mix多咯发布了新的文献求助10
5秒前
WEN完成签到,获得积分10
5秒前
Yvan完成签到,获得积分10
8秒前
醋溜爆肚儿完成签到,获得积分10
10秒前
13秒前
kk完成签到 ,获得积分10
13秒前
慕青应助yuki采纳,获得10
13秒前
muncy完成签到 ,获得积分10
14秒前
17秒前
18秒前
细腻问柳完成签到,获得积分10
18秒前
mix多咯完成签到,获得积分10
19秒前
科研通AI2S应助小眼儿采纳,获得10
20秒前
万能图书馆应助福尔摩徐采纳,获得10
21秒前
打工人肉肉完成签到 ,获得积分10
22秒前
22秒前
Scorpio完成签到,获得积分10
26秒前
28秒前
金文完成签到 ,获得积分10
29秒前
寻桃阿玉发布了新的文献求助10
31秒前
Hyh_发布了新的文献求助10
33秒前
亭树发布了新的文献求助10
34秒前
科研通AI2S应助hs采纳,获得10
35秒前
35秒前
BLDYT发布了新的文献求助20
37秒前
37秒前
yuki完成签到,获得积分10
38秒前
101给101的求助进行了留言
39秒前
CipherSage应助chcui采纳,获得10
40秒前
福尔摩徐发布了新的文献求助10
40秒前
yuki发布了新的文献求助10
42秒前
44秒前
善学以致用应助倩倩采纳,获得10
49秒前
49秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140266
求助须知:如何正确求助?哪些是违规求助? 2791039
关于积分的说明 7797809
捐赠科研通 2447561
什么是DOI,文献DOI怎么找? 1301942
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194