A grid‐based classification and box‐based detection fusion model for asphalt pavement crack

网格 计算机科学 算法 网格法乘法 接头(建筑物) 滤波器(信号处理) 沥青 集合(抽象数据类型) 模式识别(心理学) 人工智能 结构工程 工程类 计算机视觉 数学 材料科学 几何学 复合材料 程序设计语言
作者
Bao‐Luo Li,Qi Yu,Jian‐Sheng Fan,Yu‐Fei Liu,Cheng Liu
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (16): 2279-2299 被引量:13
标识
DOI:10.1111/mice.12962
摘要

Abstract Crack identification is essential for the preventive maintenance of asphalt pavement. Through periodic inspection, the characteristics of existing and emerging cracks can be obtained, and the pavement condition index can be calculated to assess pavement health. The most common method to estimate the area of cracks in an image is to count the number of grid cells or boxes that cover the cracks in an image. Accurate and efficient crack identification is the premise of crack assessment. However, the current patch‐based classification method is limited by the receptive field and cannot be used to directly classify cracks. Furthermore, the postprocessing algorithm in anchor‐based detection is not explicitly optimized for crack topology. In this paper, a new model, which is the fusion of grid‐based classification and box‐based detection based on You Only Look Once version 5 (YOLO v5) is developed and described for the first time. The accuracy and efficiency of the model are high partly due to the implementation of a shared backbone network, multi‐task learning, and joint training. The non‐maximum suppression (NMS)–area‐reduction suppression (ARS) algorithm is presented to filter redundant, overlapping prediction boxes in the postprocessing stage for the crack topology, and the mapping and matching algorithm is proposed to combine the advantages of both the grid‐based and box‐based models. A double‐labeled dataset containing tens of thousands of asphalt pavement images is assembled, and the proposed method is verified on the test set. The fusion model has superior performance over the individual classification and detection models, and the proposed NMS‐ARS algorithm further improves the detection accuracy. Experimental results demonstrate that the presented method effectively realizes automatic crack identification for asphalt pavement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王九八发布了新的文献求助10
2秒前
5秒前
6秒前
菠萝吹雪发布了新的文献求助10
7秒前
li发布了新的文献求助10
7秒前
7秒前
7秒前
纳斯达克发布了新的文献求助10
9秒前
10秒前
11秒前
axt发布了新的文献求助10
11秒前
linmo发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
科目三应助方向采纳,获得10
13秒前
14秒前
15秒前
17秒前
hucanming完成签到,获得积分10
19秒前
哇wwwww发布了新的文献求助10
19秒前
kaka发布了新的文献求助10
19秒前
19秒前
19秒前
flymove发布了新的文献求助10
21秒前
阿鲁发布了新的文献求助10
21秒前
科研dog发布了新的文献求助10
21秒前
21秒前
556677y完成签到,获得积分20
22秒前
23秒前
Ava应助axt采纳,获得10
23秒前
开心啵啵应助fffffffq采纳,获得10
25秒前
苏哈托发布了新的文献求助10
25秒前
贺世儒发布了新的文献求助10
25秒前
bkagyin应助噜噜晓采纳,获得10
26秒前
跑在颖发布了新的文献求助10
27秒前
yaruyou发布了新的文献求助30
27秒前
眰恦完成签到 ,获得积分10
28秒前
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371