A grid‐based classification and box‐based detection fusion model for asphalt pavement crack

网格 计算机科学 算法 网格法乘法 接头(建筑物) 滤波器(信号处理) 沥青 集合(抽象数据类型) 模式识别(心理学) 人工智能 结构工程 工程类 计算机视觉 数学 材料科学 几何学 复合材料 程序设计语言
作者
Bao‐Luo Li,Qi Yu,Jian‐Sheng Fan,Yu‐Fei Liu,Cheng Liu
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (16): 2279-2299 被引量:13
标识
DOI:10.1111/mice.12962
摘要

Abstract Crack identification is essential for the preventive maintenance of asphalt pavement. Through periodic inspection, the characteristics of existing and emerging cracks can be obtained, and the pavement condition index can be calculated to assess pavement health. The most common method to estimate the area of cracks in an image is to count the number of grid cells or boxes that cover the cracks in an image. Accurate and efficient crack identification is the premise of crack assessment. However, the current patch‐based classification method is limited by the receptive field and cannot be used to directly classify cracks. Furthermore, the postprocessing algorithm in anchor‐based detection is not explicitly optimized for crack topology. In this paper, a new model, which is the fusion of grid‐based classification and box‐based detection based on You Only Look Once version 5 (YOLO v5) is developed and described for the first time. The accuracy and efficiency of the model are high partly due to the implementation of a shared backbone network, multi‐task learning, and joint training. The non‐maximum suppression (NMS)–area‐reduction suppression (ARS) algorithm is presented to filter redundant, overlapping prediction boxes in the postprocessing stage for the crack topology, and the mapping and matching algorithm is proposed to combine the advantages of both the grid‐based and box‐based models. A double‐labeled dataset containing tens of thousands of asphalt pavement images is assembled, and the proposed method is verified on the test set. The fusion model has superior performance over the individual classification and detection models, and the proposed NMS‐ARS algorithm further improves the detection accuracy. Experimental results demonstrate that the presented method effectively realizes automatic crack identification for asphalt pavement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖南莲发布了新的文献求助10
2秒前
2秒前
linda完成签到,获得积分10
3秒前
3秒前
3秒前
希望天下0贩的0应助浊轶采纳,获得10
4秒前
不弱小妖完成签到,获得积分10
4秒前
谢慧蕴完成签到,获得积分10
5秒前
科研糕手发布了新的文献求助30
5秒前
小南完成签到,获得积分10
6秒前
汉堡包应助龙傲天采纳,获得10
6秒前
6秒前
7秒前
7秒前
Olivia完成签到 ,获得积分10
7秒前
9秒前
一叶知秋完成签到,获得积分10
9秒前
11秒前
传奇3应助乐观的幼珊采纳,获得10
11秒前
小巧凝丹发布了新的文献求助10
11秒前
张正友发布了新的文献求助10
11秒前
12秒前
13秒前
纷扬发布了新的文献求助10
15秒前
15秒前
17秒前
纷扬完成签到,获得积分10
20秒前
JamesPei应助小城采纳,获得10
20秒前
大模型应助简单7879采纳,获得10
20秒前
Zbmd发布了新的文献求助10
20秒前
启程牛牛完成签到,获得积分0
21秒前
21秒前
22秒前
浊轶发布了新的文献求助10
22秒前
隐形的长颈鹿完成签到,获得积分10
23秒前
个性的裙子完成签到,获得积分10
23秒前
zhou完成签到,获得积分10
24秒前
24秒前
科研通AI5应助青mu采纳,获得10
24秒前
浮游应助弱势主义接班人采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050750
求助须知:如何正确求助?哪些是违规求助? 4278368
关于积分的说明 13336233
捐赠科研通 4093439
什么是DOI,文献DOI怎么找? 2240279
邀请新用户注册赠送积分活动 1246913
关于科研通互助平台的介绍 1175892