Epileptic seizure prediction in intracranial EEG using critical nucleus based on phase transition

发作性 癫痫 脑电图 灵敏度(控制系统) 神经科学 渗透(认知心理学) 心理学 计算机科学 电子工程 工程类
作者
Lisha Zhong,Jia Wu,Shuling He,Fangji Yi,Chen Zeng,Emma Li,Zhangyong Li,Zhiwei Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107091-107091 被引量:1
标识
DOI:10.1016/j.cmpb.2022.107091
摘要

Epilepsy is the second most prevalent neurological disorder of brain activity, affecting about seventy million people, or nearly 1% of the world population. Epileptic seizures prediction is extremely important for improving the epileptic patients' life. This paper proposed a novel method to predict seizures by detecting the critical transition of brain activities with intracranial EEG (iEEG) signals.This article used three key measures of fluctuation, correlation and percolation to quantify pre-ictal states of epilepsy. Based on these measures, a ritical nucleus of iEEG signals was constructed and a composite index was introduced to detect the likelihood of impending seizures. In addition, we analyzed the dynamical mechanism of seizures at the tipping point from the perspective of spatial diffusion and temporal fluctuation.The empirical results supported that the seizures are self-initiated via a critical transition in pre-ictal state and showed that the proposed model can achieve a good prediction performance. The average accuracy, sensitivity, specificity and false-positive rate (FPR) attain 87.96%, 82.93%, 89.33% and 0.11/h respectively. The results also suggest that the temporal and spatial factors have strong synergistic effect on triggering seizures. For those seizures consistent with critical transition, the predictive performance was greatly improved with sensitivity up to 96.88%.This article proposed a critical nucleus model combined with spatial and temporal features of iEEG signals capable of seizure prediction. The proposed model brings insight from phase transition into epileptic iEEG signals analysis and quantifies the transition of the state to predict epileptic seizures with high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒梅完成签到,获得积分10
刚刚
刚刚
刚刚
ZZZ发布了新的文献求助10
1秒前
1秒前
2秒前
小柴发布了新的文献求助10
2秒前
2秒前
weiwei04314发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
蓝天应助威武的夜绿采纳,获得30
3秒前
3秒前
咕咕咕完成签到,获得积分10
3秒前
今后应助过柱菜鸟采纳,获得10
3秒前
乐乐应助smm采纳,获得10
3秒前
4秒前
繁荣的千亦完成签到,获得积分10
4秒前
紫色水晶之恋完成签到,获得积分10
4秒前
毛毛虫发布了新的文献求助10
5秒前
5秒前
ding应助乐观的镜子采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
鲤鱼谷秋发布了新的文献求助10
7秒前
帅气善斓完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
丰富的河马完成签到,获得积分10
9秒前
小何发布了新的文献求助10
9秒前
9秒前
可爱的函函应助刘胖胖采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
zzz发布了新的文献求助20
10秒前
肖邦发布了新的文献求助10
11秒前
ff发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106