Epileptic seizure prediction in intracranial EEG using critical nucleus based on phase transition

发作性 癫痫 脑电图 灵敏度(控制系统) 神经科学 渗透(认知心理学) 心理学 计算机科学 电子工程 工程类
作者
Lisha Zhong,Jia Wu,Shuling He,Fangji Yi,Chen Zeng,Emma Li,Zhangyong Li,Zhiwei Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:226: 107091-107091 被引量:1
标识
DOI:10.1016/j.cmpb.2022.107091
摘要

Epilepsy is the second most prevalent neurological disorder of brain activity, affecting about seventy million people, or nearly 1% of the world population. Epileptic seizures prediction is extremely important for improving the epileptic patients' life. This paper proposed a novel method to predict seizures by detecting the critical transition of brain activities with intracranial EEG (iEEG) signals.This article used three key measures of fluctuation, correlation and percolation to quantify pre-ictal states of epilepsy. Based on these measures, a ritical nucleus of iEEG signals was constructed and a composite index was introduced to detect the likelihood of impending seizures. In addition, we analyzed the dynamical mechanism of seizures at the tipping point from the perspective of spatial diffusion and temporal fluctuation.The empirical results supported that the seizures are self-initiated via a critical transition in pre-ictal state and showed that the proposed model can achieve a good prediction performance. The average accuracy, sensitivity, specificity and false-positive rate (FPR) attain 87.96%, 82.93%, 89.33% and 0.11/h respectively. The results also suggest that the temporal and spatial factors have strong synergistic effect on triggering seizures. For those seizures consistent with critical transition, the predictive performance was greatly improved with sensitivity up to 96.88%.This article proposed a critical nucleus model combined with spatial and temporal features of iEEG signals capable of seizure prediction. The proposed model brings insight from phase transition into epileptic iEEG signals analysis and quantifies the transition of the state to predict epileptic seizures with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
所所应助至幸采纳,获得10
1秒前
T拐拐发布了新的文献求助10
1秒前
3秒前
3秒前
3秒前
汤泡泡完成签到,获得积分20
4秒前
林好人完成签到,获得积分10
5秒前
Ranrunn完成签到,获得积分10
6秒前
汤泡泡发布了新的文献求助10
7秒前
浩二发布了新的文献求助10
8秒前
8秒前
阜睿发布了新的文献求助10
9秒前
小青完成签到 ,获得积分10
10秒前
魔法师完成签到,获得积分0
12秒前
领导范儿应助小遇采纳,获得10
12秒前
Owen应助梁海萍采纳,获得10
12秒前
黎日新完成签到,获得积分10
13秒前
13秒前
S8发布了新的文献求助10
13秒前
西桐酱完成签到,获得积分10
17秒前
文静的猕猴桃完成签到,获得积分10
17秒前
18秒前
djiwisksk66发布了新的文献求助10
19秒前
SciGPT应助Shelley采纳,获得10
21秒前
科研通AI2S应助zxfaaaaa采纳,获得10
22秒前
黄黄黄应助呉冥11采纳,获得10
23秒前
Haley完成签到,获得积分10
23秒前
wyx发布了新的文献求助20
23秒前
yongyou发布了新的文献求助10
24秒前
甜甜友容发布了新的文献求助10
26秒前
27秒前
adcc102完成签到 ,获得积分10
27秒前
Ray完成签到,获得积分10
27秒前
28秒前
果果发布了新的文献求助30
32秒前
Shelley发布了新的文献求助10
33秒前
丰富烧鹅完成签到,获得积分10
33秒前
34秒前
Hello应助云出采纳,获得10
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997731
求助须知:如何正确求助?哪些是违规求助? 3537261
关于积分的说明 11271137
捐赠科研通 3276409
什么是DOI,文献DOI怎么找? 1806986
邀请新用户注册赠送积分活动 883639
科研通“疑难数据库(出版商)”最低求助积分说明 809982