Tunable Diode Laser Absorption Spectroscopy Based Temperature Measurement with a Single Diode Laser Near 1.4 μm

可调谐激光吸收光谱技术 激光器 材料科学 可调谐激光器 光学 吸收光谱法 二极管 燃烧室 吸收(声学) 光电子学 波长 燃烧 化学 物理 有机化学 复合材料
作者
Xiao‐Nan Liu,Yufei Ma
出处
期刊:Sensors [MDPI AG]
卷期号:22 (16): 6095-6095 被引量:56
标识
DOI:10.3390/s22166095
摘要

The rapidly changing and wide dynamic range of combustion temperature in scramjet engines presents a major challenge to existing test techniques. Tunable diode laser absorption spectroscopy (TDLAS) based temperature measurement has the advantages of high sensitivity, fast response, and compact structure. In this invited paper, a temperature measurement method based on the TDLAS technique with a single diode laser was demonstrated. A continuous-wave (CW), distributed feedback (DFB) diode laser with an emission wavelength near 1.4 μm was used for temperature measurement, which could cover two water vapor (H2O) absorption lines located at 7153.749 cm−1 and 7154.354 cm−1 simultaneously. The output wavelength of the diode laser was calibrated according to the two absorption peaks in the time domain. Using this strategy, the TDLAS system has the advantageous of immunization to laser wavelength shift, simple system structure, reduced cost, and increased system robustness. The line intensity of the two target absorption lines under room temperature was about one-thousandth of that under high temperature, which avoided the measuring error caused by H2O in the environment. The system was tested on a McKenna flat flame burner and a scramjet model engine, respectively. It was found that, compared to the results measured by CARS technique and theoretical calculation, this TDLAS system had less than 4% temperature error when the McKenna flat flame burner was used. When a scramjet model engine was adopted, the measured results showed that such TDLAS system had an excellent dynamic range and fast response. The TDLAS system reported here could be used in real engine in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄荔枝完成签到,获得积分20
刚刚
桥豆麻袋完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
碧蓝老黑完成签到,获得积分10
1秒前
2秒前
xx发布了新的文献求助10
2秒前
梅梅好漂亮完成签到,获得积分10
2秒前
2秒前
烟花应助猪猪hero采纳,获得10
3秒前
4秒前
4秒前
4秒前
传统的孤丝完成签到 ,获得积分10
5秒前
5秒前
alazka发布了新的文献求助10
5秒前
科研通AI6应助MG采纳,获得10
5秒前
苏言止发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
ztgzttt发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
小金鱼儿发布了新的文献求助10
7秒前
shuo0976完成签到,获得积分10
7秒前
英俊的铭应助靓丽初蓝采纳,获得10
7秒前
LMX发布了新的文献求助10
7秒前
8秒前
端庄荔枝关注了科研通微信公众号
8秒前
xifala完成签到,获得积分10
8秒前
8秒前
8秒前
陈花蕾完成签到 ,获得积分10
8秒前
狂野善愁完成签到 ,获得积分10
9秒前
完美世界应助给好评采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271